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The project PN-II-ID-PCE-2011-3-0224, entitled
Analogies between electron transport in nanostructures and light propagation

is focused on the detailed study of analogies between the transport of charge carriers in nanostructures
and the propagation of electromagnetic waves, with the aim of developing analogies that have not been
evidenced theoretically and/or experimentally up to now. The studied nanostructures include common
semiconductors, in which electrons are described by the Schrodinger equation and graphene, in which
electrons satisfy a Dirac-type equation. In the first case, the analogies are justified by the formal similarity
between the time-independent Schrodinger equation and the Helmholtz equation, while in the second case
the spinorial wavefunction in graphene can be put into correspondence with the polarized states of light,
the components of the electromagnetic field, or the light propagation in hexagonal photonic crystals that
show no bandgap. The aim is that, by emphasizing the differences and similarities between the propagation
of electrons and photons, to contribute to the development of new devices based on the electron-photon
analogy, and to understand better the charge transport in disordered nanostructures with an
inhomogeneous distribution of scattering centers.

The project started with the study of analogies between ballistic electrons described by either Schrodinger
or Dirac equations and light (2011-2012), while the work developed in the period 2012-2013 is dedicated to
numerical simulations and experimental investigations of electron transport in disordered nanostructures,
with an inhomogeneous distribution of the scattering centers.

Results obtained in the 2011 stage of the project

In 2011 we focused on the effects of light polarization on the analogies ballistic electron-electromagnetic
field, corresponding to the activity 1.1 in the project. Ballistic transport takes place in nanostructures with
dimensions smaller than the average distance between two successive collisions of an electron with other
electrons or with the impurities in the semiconductor.

The polarization of the electromagnetic field influences light propagation through the boundary conditions
at the interface between media with different parameters (in particular, refractive indices).

The influence of polarization on the analogies between light and Schrédinger ballistic electrons
Under stationary transport conditions, the wavefunction W of ballistic electrons with effective mass m and
constant energy E in common semiconductors satisfies the time-independent Schrodinger equation

2
—h—VZ‘P+(\/—E)‘P:O (1)
2m

where V is the potential energy. This equation is formally similar with the Helmholtz equation satisfied by
monochromatic light beams with frequency @ and wavevector k in media with constant and isotropic
electric permittivity £ and magnetic permeability z [1]:

V2F +k%F =0. (2)
In (2), F stands for any component of the electric E or magnetic H fields, and k = w+/&u =| k |. The vectors
E, H and k are orthogonal and form a right-handed system.

Although, as follows from (1) and (2), ¥ is similar to any component of the fields E and H if k is replaced by
the electron wavevector y where |y |= y =4/2m(E —=V) /%, the quantitative analogies between the set of
relevant parameters for electrons, m and (E —V), and those for light (@, £and u) at propagation through a
succession of different regions, as in Fig. 1, depend on the polarization of the electromagnetic field, which



determines the continuity conditions at interface. Besides these conditions we impose the equality of the
group velocity, given by 1/./eu for plane electromagnetic waves, and, respectively,

Re[inY -V‘}’*/m]/ |¥ |2= hyIm for electrons.
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We consider electromagnetic fields/electron beams propagating in the (xy) plane, and label with indices 1
and 2 the respective parameter values in the incidence medium 1 and transmission medium 2. Irrespective
of light polarization, the tangential components of k and y are conserves, according to the Snell law, which
can be expressed as

kisin@n = kysin@y = kosiné;, y18iNGin = y18in G = y2sin G, (3)

from which it follows that 6y = Gin. In (3) Gin, 6r and 6; are the angles of incidence, reflection and
transmission of the electromagnetic field/electron beam. Other continuity conditions, dependent on light
polarization, require the conservation of the tangential components of E and H, whereas for electrons ¥
and (V¥ - x)/m must be continuous at the interface, with x the versor along the x direction.

Until now, a set of analogous parameters for the propagation of electrons and of light were found only
when the electromagnetic radiation is polarized TE (transverse electric) or TM (transverse magnetic) [1].
The orientations of the fields E and H for the polarizations TE and TM are illustrated in Fig. 2. In both cases,
the electronic wavefunction can be put into correspondence with the vector potential A of the
electromagnetic field, which satisfies equation (2) [2] and is related E and Has E = —iwA and, respectively,
H = (V x A)/ u if the scalar potential of the electromagnetic radiation vanishes.

In the 2011 stage of the project, we have studied the analogy between the scalar electron wavefunction
and the vector potential of a light wave linearly polarized at an angle « with respect to the z axis. The case
o =0 corresponds to a TE wave, while a = 7/2 describes a TM wave. In order to obtain a set of analogies
for different values of ¢, we had to find first a new set of analogous parameters for the TE and TM waves,
because in [2] the effective mass, electron energy and even the wavefunction were equivalent to
parameters with different dimensionalities for the TE and TM cases.

In this respect, we have expressed the incident, reflected and transmitted electron wavefunction
components as

Win exp[iy1(xcosbin + ysin6in)], ‘Prexpliya(-xcosér +ysin6r)], ‘Prexpliyza(xcosé +ysin&)],  (4)
and analogous for the TE wave:
A, zexpliki(xcosbin + ysinbin)], Arzexpliki(—xcosér + ysin&r)], A zexpliko(xcosé +ysin&)].  (5)

From the continuity conditions at x = 0 for the electron wavefunction and the tangential components of E
and H we obtain

¥in + ¥r = W ﬁin+Ar=A¢ )
7L 008 6in (Win - Wr) = L2 cos W “Lc0s6in(Ain — Ar) = —>cosk A (6)
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at which we add the similarities between k and  and between the group velocities 1/ /gu and Ay/m.

These similarities lead to the set of analogies in Table 1, where the effective mass, electric permittivity and
magnetic permeability were written as products: m=mgmy, ¢ =¢gogr, K= poyr, with mg the free

electron mass and gg and g the dielectric constants of the vacuum, the parameters labeled with r

denoting relative values. The refractive index of the electromagnetic field is defined as n = \/er ur .

Table 1. Set of analogous ballistic electron-light parameters for electromagnetic fields with different
polarizations

Electronic wavefunction | Electromagnetic field

TE ™ Polarized at an angle «
¥ A Ver lur A \/ Aﬂz + (er | ur) A2 expliarctan(y/er / ur tana)]
2(E-V)/h @ 1) @
E/(E-V) Er Uy

N Er iy \/(gr cos? o + Ly Sinza)/(,ur cos? a + er sin® a)

Mr Hr e N Er \/(ur cos? a + er sin® @) /(er cos? a + ur Sin? a)
mo /2E EOMO | E0LO EOHMO

Similarly, for TM polarization, the incident, reflected and transmitted vector potentials are
A, (xsin Gin — pcosbin) expliki(xcosbin + ysinbin)],  Ar (xsin&r + ycosdr)expliky(—xcosér + ysin6r)],
A (xsin& — ycosé)exp[ika(xcosé + ysin&)]. (7)
and the continuity conditions at the interface for the tangential components of E and H require that
k k
L (Ain + Ar) == Ay
H M2
C0S Gin (Ain — Ar) = cos & A

(8)

The new set of analogous parameters for electrons and the electromagnetic field is presented in Table 1. As
can be seen, the analogous parameters for the TE and TM cases have now the same dimensionality.

A more complicated situation is encountered for a linearly polarized wave at an angle a with respect to the
z axis. In this case, if we denote with Al = Acosa and A = Asin «a , the vector potentials of the incident,

reflected and transmitted waves can be written as

[ALinz + A, i (XsinGin — ycosbin)]expliki(xcosbin + ysinbin)],

[Arz+ A, ((xsiné + ycosor)lexpliki(-xcosér + ysiné)], (9)
[Ajtz+ A, ((xsiné — ycosé)]explika(xcosé + ysin4)],
and the interface conditions are

(Alin + ALr)Z = (ALin — AL r)pc0osbin = Atz — ALtyCosé
veral prd[(ALin + AL r)z + (Ain — ALr)ycosbinl = \Jer 2/ ur 2[ALtz + Ajtycosé]

The requirements (6, left) and (10) do not allow the direct finding of a set of analogous parameters because
in (10) there are terms that depend on cos(.) and other independent of this function. However, a set of
electron-light analogous parameters can be obtained (see Table 1) by adding the two equations in (10) and

(10)



comparing the result to the interface conditions for electrons. To emphasize the different character of the
terms with the same orientation obtained in this manner, the second equation in (10) was first multiplied
by the imaginary number i, which allowed the equivalence between the electronic wavefunction and a
complex number.

As can be seen from Table 1, from the set of parameters for a linearly polarized light field at angle « one
can obtain the corresponding sets for TE and TM polarizations in the appropriate limits. But, unlike for TE
and TM cases, this set of parameters cannot be directly used to design optical structures with the same
reflection and transmission coefficients, R and T, as the corresponding nanostructures for electrons
because R for a linearly polarized field at angle « is given by [3]

R =| Ar/ Ain [P= (cosa)*Rre + (sin@)?Rrm = (cos@) | Ajr / Ain I +(sine)? | Avr / ALin [° (11)
i.e. is obtained by treating independently the TE and TM components.

The angle « is, however, a parameter that can be easily tuned experimentally in optical structures to
simulate the propagation of ballistic electrons with different energies. For instance, in Fig. 3 we have
represented the dependence on energy and incidence angle of the reflection coefficient for an electron
beam with V1=0, Vo= 0.2 eV, m= 0.08mg, and mo= 0.15mq, while in Fig. 4 we have displayed the
dependence of R on « and 6, at an interface between two non-magnetic media with ng=1, np=2.5. In
both cases higher values correspond to darker colours (R takes values between 0 and 1).

0.5
80
0.45
0.4 &0 80
o o
B 0.35 E 60
5] = 40 o .
03 Za0f
g
0.25 20 20
0.2 0 0
0 20 40 60 80 0 20 40 60 80 0.3 035 04 0.45 0.5
Biq (deg) 8iq (deg) E(eV)
Fig. 3 Fig. 4 Fig. 5

The same reflection coefficient R for the electromagnetic field and electron beam can be obtained by
correlating the parameters « and E. For example, in Fig. 5 we have represented such a correlation for the
case above of electrons/light incident at the angles 40°/50° (solid line), 15°/50° (dotted line) and 60°/77°
(dashed line). It should be emphasized that the choice of different incident angles for electrons and light
makes it easier to choose optimal parameters for quantum/optical systems with the same R.

Influence of polarization on the analogies between electromagnetic field and the spinorial electron
wavefunction in graphene

Because of the vanishing effective mass of charge carriers in graphene and of their linear dispersion
relation, similar to the case of photons, the analogy between the propagation of charge carriers in
graphene and the electromagnetic field seems to be more straightforward. However, up to now no set of
analogous graphene/light parameters was found since the charge carriers in graphene have a quantum
property with no classical analog: chirality.

Graphene is a bidimensional crystal, assumed to extend in the plane (xy), and consisting of a periodic
hexagonal arrangement of carbon atoms [4]. The spinorial wavefunction in graphene, with components

gl = (w1,w2) (T indicates transposition), satisfies the equation

th[ 0 _Iyyj(mJ = (E —V)(mj (12)
7x +iyy 0 w2 w2



where Vg =¢/300 is the Fermi velocity and yx and yy are the components of the charge carrier
wavevector ¥ along the directions x and y, with wavenumber y =|y |. The dispersion relation obtained
from (12) is linear: E =V +AvE |y |, the positive and negative signs corresponding to electron and hole
states, respectively.

The reflection coefficient at an interface between two regions with different potential energies is found by

expressing the wavefunction in each region as a superposition of forward- and backward-propagating
components:

(yle _ explinysin 9)( Ae-Xp(I}/XCOS-H) + BeXp(—I-}/XCOSH) | J (13)
s[Aexp(ixcos@ +i6) — Bexp(—ipxcosd —ibd)]

and imposing the boundary condition that ¥ is constant at the interface. In (13), s =sgn(E —V) . The Snell
law becomes

(E-V1)sin@y = (E —V2)siné, (14)
and the reflection coefficient can be written as

. . 2
n | SLexp(id) —soexp(i6y) |
|31 exp(—idy) + s2 exp(i02)|

(15)

The spinoriala wavefunction in graphene has been put into correspondence with the polarized states of
light [5], or with a TE electromagnetic field [6], but no similar graphene/light boundary conditions/set of
analogous parameters was identified. The analogy graphene/polarized light at angle « was studied for the
first time in the 2011 stage of this project.
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In a similar manner to the case of Schrédinger electrons, a correlation between E and « can be found also
in this case. In Fig. 6 we have presented the dependence on the incidence angle and energy of the
reflection coefficient of electrons in graphene for V1 =0, V2= 0.2 eV, and in Fig. 7 we have illustrated the
correlation between E and « to obtain the same R as in the optical case, with the same parameters as
above, in Fig. 4. The solid, dotted and dashed lines correspond to electrons/light incident at angles 15°/75°,
15°/70° and 25°/75°, respectively. As can be seen from Fig. 7, the same R as for electrons can be obtained
in the optical case in a wider or narrower range of E for different incidence angles for the electromagnetic
field. The energy range E is chosen such that the charge carriers in graphene are electrons; a similar
treatment holds for holes, which transport electric charge for £ < 0. Moreover, Fig. 7 shows that the
quantitative electron/light analogy on a wide energy range cannot always exist for a single incident angle.
For instance, to obtain the R range for electrons with energies between 0.2 eV and 0.5 eV, the optical
analog needs to be illuminated at two incidence angles, in each case the polarization being tuned such that
the range of the reflection coefficient is the same as for electrons (see, for example, the solid line, for which
no solution for « exist for energies E higher than 0.36 eV).



Although in the simulations above, irrespective of the equation satisfied by electrons (Schrédinger or
Dirac), only one interface between media with different characteristics was considered, the results can be
generalized for a succession of regions with different widths if, besides the equality condition for the
reflection coefficient at each interface, the phase matching requirement:

k cos eopt Lopt = y COS ee| Le| (16)

is also imposed, where the indices opt and el refer to the optical and electronic case, respectively, and
Lopt, Lel are the widths of the regions traversed by optical and electron beams.

Unlike the set of analogous electron/light parameters used up to now, which required the variation of light
frequency or refractive indices to obtain the same R as for electrons propagating through a succession of
regions with different parameters, the identification of light polarization as an easily controllable parameter
in experiments offer the possibility to design simpler optical structures with the same reflection and
transmission characteristics as the corresponding ballistic nanostructures.

The results obtained in the 2011 stage of the project were published in an ISl journal (publication [P1]).

Results obtained in the 2012 stage of the project

In the 2012 stage we have studied the analogies related to the activities 1.2 (Analogies between optics and
the propagation of electrons in anisotropic media/type Il heterostructures), 1.3 (Analogies between light
propagation in metamaterials and nanostructures), and 1.4 (Analogies between spin/applied magnetic field
in nanostructures and polarized states of light) of the project. In addition, we have developed algorithms
for simulating inhomogeneous and disordered nanostructures.

Analogies between electromagnetic field and ballistic Schrédinger electrons in anisotropic media/type Il
heterostructures, metamaterials or in the presence of spin effects

Regarding activity 1.2, based on the analogy with amphoteric light refraction [7], we have demonstrated
that at the interface between an isotropic medium, denoted by 1, and an anisotropic one, denoted by 2
(see Fig. 8) the current density of electrons, j, is refracted at an angle ¢, which is different from the
refraction angle &, of the wavevector k, these angles being identical in the isotropic medium 1: ¢ =& . In
particular, at the interface between the isotropic crystal Bi,Se; and the anisotropic crystal Bi,Tes;, when the
ellipsoid of the effective mass is oblique with respect to the interface, the signs of the angles ¢ and &> can
differ for a wide range of incidence angles (see Fig. 9), the transmission coefficient of electrons having
significant values in the whole range, as can be seen from Fig. 10.
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As an application, we have shown that a point-like electron source, with an angular divergence of 60° can
be collimated after refraction at the interface Bi,Ses/Bi,Tes situated at x = 4 nm in Fig. 11, its divergence
Adp = ¢2(30°) — #2(—30°) being smaller than the initial value. In addition, the electron beam propagates
now at an angle ¢t =[¢2(30°) + ¢2(—30°)]/ 2. The electron trajectories are represented with red lines in
Fig. 11, the blue lines indicating the virtual electron source, and the dependences on the electron energy of
the angles A¢p and ¢t are illustrated in Fig. 12. Figure 13 represents the probability of finding an electron



that passes through the interface situated at x = 4 nm, the oscillations in the left part of the figure
indicating the interference between the incident and reflected wavefunctions.
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These results, which suggest a new manipulation mechanism of ballistic electrons, were published in an ISI
journal [P2] and were presented at an international conference [C1].

The propagation of electrons in type Il heterostructures involves a correlation between the wavefunctions
the conduction and valence bands, ¢ and wy, the total wavefunction having (up to a phase factor) the

form ' = (we,pv) = (LB), where B =HhPK/(E—Ey), with k=[(E - Ec)(E - E\)J"'2/%P the wave-
number, P a measure of the correlation between the conduction and valence bands and E¢y the edges of

this bands [8]. This wavefunction is similar to the Jones vector J7 =(Ex,Ey), where Eyy are the
components on the x,y axes of the electric field that propagates along the z direction [3]. In particular, the
wavefunction in type Il heterostructures is identical to the Jones vector of light polarized at an angle & with
respect to the x axis, if tand = £ . The correlation between the electron energy E and the polarization angle
0 of light is represented in Fig. 14 with solid line for InAs, the change of this angle at the InAs/AlSb

interface, A@, being represented with dotted line; the interface is similar to a device that rotates the
polarization angle of light.

Regarding activity 1.3, we have shown that the electronic equivalent of the optical metamaterial, with
dielectric constants £< 0, £ < 0, is a periodic medium consisting of layers denoted by 1 and 2, with widths
d =d; =d», effective masses my >0, my <0 and potential energies E-V; <0, E-V2 >0, surrounded
by layers with Mijn, Mout > 0, E >Vin,Vout. In this metamaterial regime, the transmission T through a
structure with N periods is significant, even if the wavenumbers k;j =[2m;(E —Vi)]1/2/h, i =1,2, in both
layers are imaginary, as can be seen from Fig. 15 for my =0.04mg, V1 =0.4 eV, my =-0.02mg, V,=0,
Min = Moyt = 0.03mg, Vin =Vout =0, and N =10, d = 2 nm (solid line), N = 10, d =3 nm (dotted line) and N
=5, d = 2 nm (gray line). This result generalizes the class of nanostructures similar to metamaterials in
optics [9], with specific propagation characteristics.
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The important parameters in high-frequency electronic circuits are the transfer/traversal times through
nanostructures. Therefore, we have studied the dependence on the electron energy in the metamaterial



regime of the delay time zpnh = Z[0Arg(t)/0E], relevant for quasi-monoenergetic electron pulses, and of
the traversal time 7 = [dx/vg(X), relevant for monoenergetic electron beams; vg(x) is the group velocity

of electrons propagating along the x direction. For the situations in Fig. 15, these dependences are
represented with the same line type in Fig. 16 and, respectively, Fig. 17, the times being normalized to the
traversal time of a structure of width L=N(dy+d2)+d; in the absence of the periodic medium,

70 = Lmijn / #ikjpn . It can be observed that there are energy ranges in which Tph <70, the periodic structure
accelerating the electron transport, but in all cases (at least in the example considered here) 7ty > 7g.
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These results were published in an ISI journal (publication [P3]) and presented at an international
conference [C2].

Regarding activity 1.4, we showed that the propagation of the polarized states of light, represented by the
Jones vector JT = (Ex, Ey), is analogous to electron transport through nanostructures in the presence of

the Rashba effect [10]. The Rashba effect is a spin-orbit coupling that separates the energetic states of
electrons with spin up and down due to the local electric field, perpendicular to the interface of the
heterojunction, and caused by the inversion asymmetry of the structure. In a bidimensional electron gas
located in the plane (x,y), in the presence of the Rashba efect (or of the equivalent magnetic field

B = 20k / gug ) the Hamiltonian is Hop = h2k? 12m + a(kyox —kxoy), where a is the Rashba coefficient,
ox,y are the Pauli matrices and ky y are the components of the electron wavevector k along the directions
x,y. The eigenfunctions of the electrons with spins up and down are given by (up to a phase factor)
w1 = (cos(p/2),-sin($/2)), w! = (sin(p/2),cos(¢/2)) with ¢=arctan(ky/ky), and are similar to the
perpendicular Jones vectors of light linearly polarized at the angles —¢/2 and z/2—¢/2 with respect to
the x axis, or of light circularly polarized left/right [3]. An interesting application of this analogy is electron
transport through an interface between a region in which the Rashba effect is absent and a region in which
this effect is present. At normal incidence, the spins of incident electrons suffer a precession, as in the case

of the optical Faraday effect, whereas at oblique incidence an electron beam splits in two beams with spins
oriented perpendicular to the wavevectors of the two beams.

This phenomenon is analogous to the double refraction encountered in optics in uniaxial crystals, with
ordinary and extraordinary refractive indices ne and ng. The Rashba effect is difficult to be observed in
bidimensional electron gases because the electrons are not monoenergetic, are not incident on the
interface at the same angle, their spin cannot be controlled precisely and, often, the Rashba effect is
accompanied by other phenomena such as the Dresselhaus effect [11], which contributes to the electron
Hamiltonian with the term A(kxox —Kkyoy). The analogy with classical optics can determine which of

these factors limit the observation of the Rashba effect. An interesting result is that, if the Dresselhaus
coefficient becomes S = a , the wavefunction is independent of the electron momentum, which enhances

the probability of observing the Rashba effect.

A qualitative electron-electromagnetic field analogy in the case of the Rashba effect can be found, for
example, imposing the requirement that, for a crystal with given ng and ne, the optical incidence angle 01

is chosen such that the propagation angle of the ordinary wave, &g, is equal to the propagation angle of



electrons with spin up or down in AIGaN/GaN in the presence of the Rashba effect, the propagation angle
of the extraordinary wave, dg, being found from the Snell law. In Fig. 18 we have presented with black or
gray lines, as a function of a normalized at «g =#h42e/mg, the solutions found for the optical

propagation angles corresponding to electrons with energy E = 0.25 eV incident at 15° on the Rashba
medium with spin down or up, respectively, for ng= 1.67 and ne = 1.55. Similar dependences, on electron
energies are represented in Fig. 19, for ¢ = 9.
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In the presence of both Rashba and Dreselhaus effects, when £ = «, the optical analog of the electron gas

is a uniaxial crystal with the optical axes oblique to the interface, at an angle y. By imposing the condition
of equality between the propagation and reflection angles of electrons with spin down and the optical
extraordinary wave, the dependence of the optical axes tilt on the energy of electrons with spin down
incident at an angle of 15° is illustrated in Fig. 20 for a = #=0.05a0 (solid black line), 0.07ao (dotted
black line), 0.1lxg (dashed black line), 0.15aq (gray solid line) si 0.2aqg (gray dotted line). For other

conditions, for example, equality of electron and optical propagation angles for y = 20°, the incidence angle
on the uniaxial crystal varies with the electron energy as shown in Figure 21.

The results obtained on the analogy between the electromagnetic fields and electrons in the presence of
spin-orbit interaction were published in [P6].
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Analogies between Dirac ballistic electrons and the electromagnetic field in gyrotropic and electro-optic,
and complex conjugate media and in photonic crystals with Dirac points

These analogies encompass the project activities 4.2 (Design of structures in which the components of the
electromagnetic field propagate similarly to electric charges in graphene devices), 4.3 (Effects of light
polarization on the analogies between photonic crystals with Dirac points and graphene), and 4.4 (Effects of
different boundary conditions on the analogy between the electromagnetic field and graphene). We have
found that activity 4.4 cannot be treated independently from 4.2 and 4.3, so that the investigation was
focused on two subjects: analogy electromagnetic field-graphene (which encompasses 4.2 and 4.4) and
analogy photonic crystals with Dirac points-graphene (which encompasses 4.3 and 4.4).



Regarding the analogy electromagnetic field-graphene, we have shown that the propagation of electric
charges in graphene, characterized by chirality, is similar to light propagation through gyrotropic and
electro-optic media, and through complex conjugate media. In particular, the Dirac equation for the

spinorial wavefunction in graphene, ;z/T = (w1,v2), and the equation describing the propagation of
polarized states of light with wavevector a through a medium with gyrotropic coefficient y and electro-
optic coefficient fare similar [12]:
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Thus, the transmission coefficient of electrons with Fermi velocity v at an interface between two media
with different potentials V in graphene (Fig. 22a), tgr, and the ratio of the amplitudes of the independent,
elliptical polarization states of light, tpol, are similar, i.e. tpo] =itgr, if the variation of light polarization
A@ =arctan(y/ ) at an interface between media 2 (air) and 1 (CdosMngsTe), as in Fig. 22b, is
appropriately correlated with the incidence angle of electrons in graphene. The dependence of A@ on ¢

and, respectively, that of the ratio between the magnetic field (which determines 7} and the electric field
(which determines f) on ¢ are illustrated in Fig. 23, for the range of incidence angles for which such a

guantitative analogy exists.
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In the second case, the propagation of electrons through an interface in graphene is put into
correspondence with light propagation through an interface between air and a complex conjugate medium
(Fig. 22c), in which the relative dielectric constants are complex: g =m(a+ib), g =a—ib, but the
refractive index n = (er,ur)ll2 = [m(a2 +b2)]1/2 is real [13]. For m =1, a = 1.5 and b = -0.05, the optical
transmission coefficient, tecm, is identical to tgr if F =[cos¢y(sing —sing)]/[1+cos(d + ¢2)]
— Im[teem] = 0. This condition can be satisfied on a wide range of light incidence angles, 6° < & < 42°, the
solid red and dotted blue lines in Fig. 24 corresponding to the optical incidence angles 10° and 40°.



The obtained results, which confirm the fact that the electron chirality in graphene can be mimicked in
classical optical systems, were published in an ISI journal [P4], presented at an international conference
[C3] and at an international Heraeus seminar (two contributions, [C4] and [C5], the first one being invited).

Regarding the analogy photonic crystals with Dirac points-graphene, the study started from the fact that
Dirac points in photonic crystals exist only for TE polarization and not for TM polarized light. For TE light the
Dirac equation can be written as

0 VD(kX - |ky) lPl _ lP]_
(VD (K + iky) 0 J(\yz) =20 C"D)[\sz (18)

(similar to that in graphene) and is satisfied by the degenerate Bloch states Wi,2 in the corners of the first
Brillouin zone, with vp the light velocity in the homogeneous medium and wp the frequency at the Dirac
point. The graphene-photonic crystals with Dirac point analogy was investigated from the point of view of
the linear dispersion relation for light, as in graphene, in photonic crystals surrounded by regions in which
light satisfies the Maxwell equation, respectively regions in which electrons satisfy the Schrodinger
equation. This problem has been treated independently in optics [14] and in graphene devices [15], the
results suggesting that the transition between the Maxwell-Dirac-Maxwell equations for photons and
Schrddinger-Dirac-Schrodinger for electrons lead to a dramatic decrease of transmission compared to the
situation in which no such transformation of the governing photon/electron equation occurs. The
advantage of correlating the results in optics and graphene is that one can fabricate a photonic crystal that
simulates the propagation of electrons in contacted graphene. This problem is important since the
influence of contacts, in which electrons satisfy a Schrodinger equation, on the performances of graphene
devices is not fully understood.

The graphene-photonic crystal analogies are not unique since they depend on the wavefunction continuity
conditions at the contact/graphene interface. For instance, the dependence of electron transmission on
energy and the incidence angle vary as a function of the continuity conditions, but these conditions are not
known and there is no motive to favor a certain condition. Thus, fabricating a photonic crystal and studying
its transmission as a function of the incidence angle could solve the problem of finding the proper boundary
conditions at the interface between graphene and metallic or semiconducting contacts; the aim is to
increase the transmission as much as possible. For example, in Fig. 25 (a) and (b) we have represented the
transmission dependence on the effective masses, m; and mg3, of electrons in the contacts, for two
different boundary conditions. As can be seen, optimum transmission can be achieved for identical or
different contacts, depending on the boundary conditions.
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Development of algorithms for simulating inhomogeneous and disordered nanostructures

Besides studying the analogies between ballistic electrons and the electromagnetic field, we started to
develop computational algorithms for simulating the electric transport in inhomogeneous and disordered
nanostructures [16]. The aim is to find the configuration that is closest to an optical medium that amplifies
or absorbs electromagnetic radiation.



The major difficulty in the treatment of charge transport in nanostructures, seen as open quantum systemes,
is to determine the wavefunctions for a sufficiently wide energy range, necessary to solve the coupled
Schrédinger and Poisson equations. The R matrix formalism could solve this problem. It involves two
computing steps: (i) the calculation of energy eigenvalues for the considered physical system, with fixed
boundary conditions, and (ii) the calculation of the wavefunction and the transmission coefficient at each
energy with a much lower computational cost.

In this respect, in the R matrix formalism, the physical system is divided in an internal region Qg
(“scattering region”, in which the actual interactions take place) and an external region Qg, corresponding
to the contacts (semi-infinite and translational invariant, with a confining potential that defines the
transport channels). The geometry of the problem is described in Fig. 26. In this case, the wavefunction of
an electron incident in channel v from contact s is

y(reQsE) =LY 2[exp(—ikyzs)d (rLs) + X, S (E) expliky'zs ) (rLs)] (19)
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the elements of the scattering matrix S being related to the transmission functions as T,,'(E) =| S,,'(E) |2.

In the scattering region the wavefunctions are solutions of the stationary Schrédinger equation in the self-
consistent potential Wsc(#), and are expressed in the complete system of the wavefunctions y(r) of an

auxiliary Wigner-Eisenbud problem with eigenenergies E|. To find the matrix S it is necessary to determine
first the function R defined as

R(r,#;E) =—(h212m); 1 (r) 71 (') [E - E1) (20)

from which S is obtained as S = —[I + (i/m)R«][I — (i/m)RK]_l, where / is the unit matrix, R is the matrix

with elements determined by the R function and « is a diagonal matrix with elements determined by the
wavenumbers of the electrons incident in different channels.

To implement numerically the formalism of the R matrix we used an iterative self-consistent method to
solve the system of coupled Schrédinger and Poisson equations, based on a linear mixing procedure for the
self-consistent potential or on a Broyden type. Several sections of the developed numeric code were
parallelized, which reduces drastically the computing time. The development of these algorithms allows the
computing of transport characteristics of inhomogeneous structures. We intend to study geometrical and
dopant/charge carrier concentration inhomogeneities in order to determine which configuration can be
considered the closest to an optically active medium.

Results obtained in the 2013 stage of the project

In 2013 we have performed intensive simulations of electron transmission in inhomogeneous and
disordered nanostructures based on the R matrix method. We have used the computation algorithms
developed in the last part of 2012 and optimized them.

The objective of the 2013 stage was to establish an analogy with light propagation in active disordered
media. Such an analogy was not studied up to now. For light, it was determined that the localization
threshold in disordered structures depends on the homogeneous or inhomogeneous character of the
distribution of scattering centers [17]. The spatial confinement of light favors the localization of



electromagnetic waves with certain wavelengths due to the dependence of the induced interference in
structures with low dimensionality on the light wavelength [18]. In addition, if the optical medium is active,
i.e. absorber or amplifier, the localization threshold of light depends also on the absorption coefficient,
which prevents photon localization since it impedes the interference of scattered light, or on the gain
coefficient, which favors the localization by enhancing light amplification [17,18].

These considerations put the light-electron analogies in disordered media in a new perspective. In optically
active media, the intensity of light increases or decreases with the propagation distance, depending on the
absorber or amplifier character of the medium. On the other hand, for electrons the current (considered
usually similar to the optical intensity) is constant throughout the conductor. Thus, a spatial inhomogeneity
for electron propagation can only be a conductor in which the concentration of free electrons, the
transverse dimension of the conductor or the concentration of the scattering centers vary in space.

To define the configuration of an inhomogeneous nanostructure analogous to an active optical medium,
which is the objective of the activity 1.1, we took into account also practical considerations. The case when
the transverse dimension of the conductor is not constant has no practical utility, so that this situation was
not investigated. On the other hand, a spatially varying electron concentration leads to the appearance of
an internal electric field, with no equivalent in optics, except media in which the refractive index varies
spatially; such media, especially when disordered, are difficult to fabricate. Therefore, we have considered
that a spatially varying scattering of electrons is more likely to correspond to a disordered optical active
medium, and have chosen this case for numerical investigations. In addition, this situation is relevant in
practical applications since the disorder/distribution of scattering centers can vary gradually in the
fabrication process of nanostructures.

The first simulations of this configuration of interest focused on a homogeneous bidimensional
nanostructure, with a disordered distribution of the scattering centers (impurities). The study of such a
structure corresponds to the activity 1.2. We have computed the charge transport, in particular the
transmission, in these nanostructures with either attractive or repulsive impurities modeled as distributed
Gaussian potentials

(rq —Ra)z

V(r)=2>,Voexp| - > (21)

20

where r, are the centers of a quadratic grid and R, are chosen arbitrarily in the scattering region, as a
function of an order parameter. The scattering potential Vg is —1 eV for attractive impurities and 1 eV for
repulsive ones and the standard deviation o= 1 nm was considered the same for all scattering centers. The
order parameter 77 defines the shift of the scattering centers with respect to the 10x10 quadratic grid:

R, = Rg +0R cu SR =L(A-n)nx+L{L-7n)ray, where L =80 nm is the side of the scattering center and
1,2 are random numbers between 0 and 1. For 77 = 1 the system is ordered, whiler; = 0 corresponds to

complete disorder. We have assumed a quadratic scattering region surrounded by ideal contacts, the
electron effective mass being chosen as that in GaAs: m =0.065mg .

The parameter of interest is the total electron transmission between source and drain contacts, Tsp,
calculated as a sum over all open channels (the normalized conductance value); as such, this parameter can
be larger than unity. The total transmission was represented in the figures below after averaging over 100
ensembles with distinct disorder.

Figure 27 illustrates the transmission for attractive scattering centers for 77 = 1.000, 0.994, 0.990, 0.986,
0.980, 0.970, 0.960, 0.940, 0.900, and 0.000, the respective curves varying from top to bottom in region A.
In the inset of Fig. 27 we have represented the transmission for high values of the order parameter: 1.000,
0.998, 0.996, 0.994, 0.992, 0.990. It can be seen that the sharp maxima of transmission tend to flatten as
the order decreases, while the forbidden region, located between 0.06 and 0.1 eV for a completely ordered
system, disappears as 77 decreases to values of 0.97-0.98. This forbidden region is caused by a superlattice
effect. This region in the case of attractive impurities is evidenced also by the plateau in the integral over



the transmission coefficient, represented in Fig. 28. This figure suggests the existence of a phase transition
for nin the range [0.97,0.98].
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The energy dependence of the source-drain transmission for repulsive scattering centers is illustrated in
Fig. 29. The curves decrease in amplitude for 7 values of 1.000, 0.990, 0.985, 0.980, 0.970, 0.000, 0.920. As
in the case of attractive impurities, the maxima flatten as the disorder increases, and the threshold energy
value at which the transmission is significant decreases as 7 takes smaller values. This effect can be
explained by a decrease of the backscattering efficiency of the ordered array of repulsive impurities.
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The significant difference between the effects of the attractive and repulsive scattering centers is
evidenced also by the energy dependence of the integrated total transmission, represented in Fig. 30 with
black and, respectively, red lines. From this figure it can be seen that the integrated transmission decreases
sharply at a certain 77 value for repulsive impurities, and increases rapidly for the attractive ones. The cause
of this phenomenon is under investigation. The numerical simulations show that the value and the energy
dependence of the transmission coefficient can be modified by the presence (intentional or not) of
impurities of a certain type: attractive or repulsive. These results have been presented at an international
conference [C6].

It should be emphasized that the transmission in disordered conductors has a far more complex behavior
than light scattering, since there are two types of scattering centers in this case (attractive or repulsive) and
the transport of charge carriers is different in these cases. The two types of impurities have no optical
analog. Moreover, the two types of active media in optics (absorber or amplifier) cannot be put in direct
correspondence with the attractive or repulsive impurities in the case of electrons since in the last case not
only the amplitude of the wavefunction changes, but also the interaction.

A study of the influence of the two types of scattering centers on electron transmission in inhomogeneous
and strongly confined nanostructures is presented in Fig. 31 and, respectively, Fig. 32. the bidimensional



structure has a width W =40 nm and a length L = 160 nm, the N = 100 impurities being placed in an ordered
manner (in the nodes of a grid with equal distance along the transverse y direction and not equal distances
along the longitudinal x direction) but distributed spatially according to a polynomial law. More exactly, the
impurity concentration was chosen to vary as

L
Nm(X) = nomx ", [nm(X)dx =N (22)
0

In Fig. 31 and 32 we have presented the total source-drain transmission for m = 1, 1.5, 2, 2.5 and 3, the
black line indicating the transmission value in the absence of scattering centers. The value m =1
corresponds to a homogeneous and ordered distribution. Surprisingly, at least at first glance, is that the
transmission behaves similarly for attractive and repulsive impurities. The step-like variation of
transmission for both attractive and repulsive scattering centers follows the transmission of an ideal
conductor (with no impurities), the energy thresholds being in agreement with the results in Figs. 27 and
29. In addition, it can be seen that the inhomogeneous distribution of impurities has a similar effect on
transmission as the disorder in an array of homogeneously distributed scattering centers. In particular, the
step-like transmission shape is no longer evident as the inhomogeneity increases and the transmission
value decreases, the decrease being more visible for attractive scattering centers.
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The simulation results in Figs. 31 and 32 have not revealed significant differences between the effects of
attractive and repulsive scattering centers because the spatial confinement was too strong. Therefore, we
have studied a wider bidimensional conductor with W = L = 80 nm, in which we have distributed the N =
100 impurities in an ordered manner according to the polynomial law (22). The results for attractive
scattering centers are presented in Fig. 33, a detail of this figure being shown in Fig. 34.



A comparison with Fig. 27 leads to the following conclusions (i) for m small (moderately inhomogeneous)
the transmission coefficient behaves similarly to the case of a homogeneous distribution of ordered
impurities, (ii) as the parameter m increases (the inhomogeneity increases) the forbidden region, in which
the transmission coefficient Tgp vanishes shift toward smaller energies and the value of Tsp decreases (in
the disordered system the forbidden region is not shifted), (iii) the oscillatory behavior of the transmission
coefficient is apparent for all m values, being caused by the interference of the wavefunction in the ordered
array of scattering centers. On the other hand, the global behavior of the transmission is similar to the case
of a disordered homogeneous system. In all situations, the value of Tgp is much smaller than in a
nanoscale conductor with no scattering centers (see the black line in Fig. 33).

The energy dependence of the transmission coefficient for repulsive impurities positioned in an ordered
but inhomogeneous manner is illustrated in Fig. 35, while a detail of this figure is shown in Fig. 36. In this
case the value of Tgp is higher than for attractive impurities, in agreement with the simulation results for
the disordered case. Again, the general behavior for m small is similar to the case of the disordered and
homogeneous distribution of repulsive scattering centers, significant values of transmission appearing at
higher energies as m increases. The last observation does not agree with the Tgp behavior in
homogeneous conductors. In addition, the energy dependence of the transmission coefficient is almost
identical for m > 2, except for the oscillations in Tsp (due to the interferences of the wavefunction in the
ordered structure), which tend to become irregular.
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So, unlike for attractive scattering centers, the non-homogeneity of repulsive impurities has a much smaller
influence on electron transport. This result has a practical importance, since it implies that the fabrication
tolerances of nanometer-scale device can be relaxed if repulsive impurities are introduced. The numerical
simulations obtained in 203 were published in an ISl journal [P7].

Results obtained in the 2014 stage of the project

The 2014 stage of the project focused on the fabrication of inhomogeneous nanowires, in which the density
of carriers/scattering centers is variable and controlled, and on the morphological characterization of these
structures. This activity was time-consuming such that, in order to find the optimum conditions in which
the inhomogeneity of charge carriers has observable effects, we continued to perform numerical
simulations for nanowires with variable concentrations of charge carriers along the longitudinal direction
(along the wire axis). In the following we detail the results obtained in optimizing the profile of the
inhomogeneous distribution of scattering centers as well as in fabricating the nanowires.

Optimization of the effect of inhomogeneous distribution of scattering centers on ballistic transport

An inhomogeneous distribution of scattering centers can enhance the thermal and/or transport
characteristics of some devices. For example, the Seebeck coefficient and the electrical conductivity in
polycrystalline materials can simultaneously increase [19], or the luminosity of polymeric LED can increase



[20]. The modeling of such a distribution of scattering centers has been done up to now for diffusive
transport only [21-23], quantum effects being considered only in nanosystems with a spatially
inhomogeneous cross-section [24].

In order to study the effect of inhomogeneous scattering centers on charge transport, we calculated the
transmission coefficient of ballistic carriers using the R matrix formalism [16], presented above. In
particular, we simulated an ordered distribution of scattering centers/impurities, in which the gradient of
the scattering center concentration is finite. Thus, we could focus exclusively on the effect of
inhomogeneity of impurities on the transmission coefficient. In the geometry of the problem, shown in Fig.
37, the scattering centers (represented by points) are modeled by Gaussian potentials, in which the spatial
distribution along the transverse y direction is homogeneous but along the longitudinal x direction varies as

X o« NP, where n labels the impurity column along x.
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The charge carriers incident from the left contact (source) interact with scattering centers in the central
region and are collected by the right contact (drain), the interaction being described by the
time-independent Schrodinger equation, in which the one-particle Hamiltonian in the effective mass
approximation is

2 2
2m s

(23)

where m is the effective mass of carriers, r = (X, y) is the position vector, r, denotes the position of the

impurity center with Gaussian potential and standard deviation 0. We modeled the effect of both attractive
and repulsive impurities by choosing Vo = -1 eV and, respectively, 1 eV, in both cases having o =1 nm.

As an example, we studied a bidimensional electron gas in GaAs in which m = 0.0655 mo, the scattering
region, with length of 160 nm and width of 80 nm, containing 20 x 10 scattering centers. Considering ideal
contacts, we simulated scattering on attractive and repulsive impurities with p = 1, 1.05, 1.1 and 1.5. The
first case corresponds to a periodic arrangement of impurities.
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In Figs. 38(a)-(c) we represented the energy dependence of the source-drain transmission coefficient T for p
=1, 1.1 and, respectively, p = 1.5, for attractive impurities and for an increasing number of channels. For p =
1 (Fig. 38(a)) a succession of allowed and forbidden energy bands form as a result of the superlattice effect
in periodic structures. However, remnants of energy bands can still be observed, at low energy, up to p =
1.1. The maxima of the transmission coefficient are wide in the allowed bands and have a triangular shape
because the electrons in different channels/with different energies E feel a different potential energy
distribution, the widths and heights of the periodic Gaussian potential wells depending on E. Between 0.04
eV and 0.9 eV a forbidden energy band appears, in which T = 0. As the inhomogeneity (p value) increases,



the potential profile is no longer periodic and the maxima decrease in amplitude until, in sufficiently
inhomogeneous structures, the transmission coefficient varies almost linearly with energy, as in the case of
disordered systems [C6]. For attractive impurities the transmission range up to 0.04 eV vanishes for p = 1.5.
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Besides modifying the energy dependence of the transmission coefficient, the inhomogeneous distribution
of attractive scattering centers leads to mode mixing in the scattering region, especially at high energies.
Extensive simulations (see publication [P7]) showed that the probability distribution of carriers for a given
channel depends non-uniformly on p: in general, for lower-order channels the electron wavefunction
modulus maintains its form but decreases as p increases, while for higher-order channels both the shape
and the probability distribution value changes with p, with no clear trend. For example, in Figs. 39(a)-(c) we
have represented the variation with p (p = 1, 1.1 and, respectively, 1.5) of the wavefunction modulus
throughout the whole structure (contacts and scattering region) for the 9" channel at £ = 0.178 eV, energy
for which T is minimum. Besides emphasizing the electron redistribution among the open channels, this
figure shows the tendency of increasing as p increases of the probability at the outer edges of the
scattering region, which suggests structures sensitive to surface effects, and thus appropriate for sensing
applications.
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A similar treatment of repulsive impurities show the same tendency of decreasing of transmission maxima
as p increases and an almost linear dependence of T on energy for p = 1.5 (see Figs. 40(a)-(c) in which the
energy dependence of T is represented for p = 1, 1.1 and, respectively, p = 1.5, for an increasing number of
channels). Although for p = 1 we observe the same wide and triangular maxima, due to the structure
periodicity, which disappear gradually for an increase in inhomogeneity of the impurity distribution, the
maxima seem to be more robust than for attractive impurities, and can be observed at small energy even
for p = 1.5. The transmission threshold, located at 0.02 eV for p = 1 and caused by the formation of a
bandgap at lower energies, shifts to higher energies as p increases.

Again, different modes become mixed, the electrons being redistributed among the open channels, without
identifying a particular behavior of the probability distribution and T with p. Simulations of the
wavefunction modulus show that, in general, the transmission of lower-order channels increases with p,
but the transmission value and the shape of the probability distribution for higher-order channels are less
influenced by the p value than for attractive impurities. Unlike for scattering on attractive centers, in this
case the wavefunction modulus is concentrated in the central region for certain channels, for example for
the 9™ channel at £ = 0.134 eV (for which the total transmission is minimum). The behavior of the
wavefunction in this case, represented in Figs. 41(a)-(c) for p = 1, 1.1 and, respectively, 1.5, suggests a
decrease of sensitivity at surface effects



210 3x107

- 2107
2x10)
2 2¢107
10" =
2=10°

width (nm)
width {nm)
width (nm)

1107 2
110

sx10" =100

4 20"
. 2107
w10
. 1107
} 510
() 3
D10 10

=200 -150 <100 =50 0 50 100 150 200 =200 <150 <100 -50 O 50 100 150 200 200 -150 -100 -50 0 50 100 150 200

10"

length (nm) length (nm) length (nm)

Fig. 41 (a) (b) (c)

The results of these simulations were published in the paper [P7] and were presented at an international
conference [C7].

Fabrication of nanowires with inhomogeneous distribution of scattering centers

The numerical simulations above show that an inhomogeneous distribution of scattering centers, even an
ordered one, affects the ballistic transport in a similar manner to a random distribution of impurities, this
fact being observable even for propagation distances of only tens of nm. As such, the benefits of doping for
electronic devices based on nanowires could be most clearly emphasized in segmented nanowires. To fulfill
the objectives of this stage of the project, arrays of Ni nanowires (uniform at first, to calibrate the growth
method, and segmented afterwards, of the type Ni/Cu) were grown electrochemically in the nanopores of
an alumina template.

Nanostructured systems based on Ni and on its alloys are important for sensing applications due to their
magnetic and catalytic properties, which are strongly dependent on composition, dimensions, shape and
morphology of nanowires. The matrices of uniform or segmented Ni wires, including Ni/Cu wires, were
produced by a template method. This method is commonly used to fabricate wires with controlled
diameters [25-28]. The template was alumina, in which a matrix of nanopores was created by controlled
anodization.

Fabrication of the alumina template

The template is fabricated on a substrate, which is a Si(111)/SiO2 wafer (the width of the SiO2 layer is 30
nm), cleaned by ultrasonication in a bath of organic solvents (benzene and acetone). The wafer is first
covered with an Au film of 200 nm, deposited by DC cathodic pulverization. The Au film has the role of:

a) anodization barrier for the subsequent deposition of the Al film;

b) working electrode in the electrochemical anodization process, and during the subsequent
electrochemical deposition of nanowires.

The third layer is Al (350 nm thick), also deposited by DC cathodic pulverization. The anodization of the Al
film was performed in a home-made electrochemical cell for an optimum control of the temperature of the
electrolytic bath. A three-electrode working configuration was used (consisting of the two working
electrodes and a commercial reference electrode from saturated calomel — SCE). The anodization
temperature must be kept around 3-5°C, to avoid nanopore closure. The anodization electrolyte consists of
a mixture of oxalic and phosphoric acids, the complete chemical reaction being:

2Al + 3H,0 >Al,0; + 3H, (24)

The alumina membrane shows a high density of nanopores, with a typical morphology as that in the SEM
image in Fig. 42.

The chrono-ampermetric curve recorded during the anodization process and presented in Fig. 43 reveals
the three stages of the anodization process:

1) the formation of a thin Al,O; layer at the cathode surface (Al film), associated to the initial sharp
decrease of the current;

2) the equilibrium between the two competing processes: dissolution of the formed oxide in the region of
intense electric field and continuation of the oxidation process, the competition between these processes
leading to nanopore formation;



3) nanopore growth up to the Au electrode, which inhibits oxidation, and leads to a sharp increase of the
current due to the electrolyte short-circuit.
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Fabrication of the matrix of Ni nanowires

The Ni nanowires were grown in the pores of the alumina membrane by an electrochemical procedure. The
electrochemical deposition has the advantages of low cost and possibility of achieving with not very
sophisticated equipmets. Combined with the template method, the electrochemical deposition is very
versatile, and can be used to grow wires from either metal or semiconductor materials. Homogeneous or
segmented wires can be obtained by controlling specific growth parameters [29-31]. The Ni nanowires
were obtained using as electrolyte a Watts bath containing 225 g/L of NiSO, -6H,0 and 30 g/L of

NiCl, -6H,0 . A VoltalLab potentiostat was used to control the electrochemical process via a computer, in

the three-electrode configuration with an Au cathode, a platinum anode and a SCE reference electrode.
The temperature was kept at 5°C during the growth of Ni wires. Under these conditions the reaction at the
cathode is:

Ni%* + 2e” SN{° (25)

A typical chrono-ampermetric curve recorded during the growth of wires inside the pores is shown in Fig.
44,
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After the pores are filled, the template membrane is dissolved in an alkaline solution of NaOH, so that the
matrix of Ni wires remains exposed. Figures 45(a)-(c) present SEM images, with increasing magnification, of
the nanowire matrix grown on a set of Au interdigitated electrodes. As can be observed from these figures,
the nanowires grow only on the metallic surfaces/interdigitated electrodes.
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This type of electrodes was then used as chemical sensor of glucose, with capacitive detection. The lock-in
detection system is represented schematically in Fig. 46. This type of sensor has the advantage of an
enhanced sensitivity due to the large surface/volume ratio.
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The capacitive response was measured by impedance spectroscopy, the capacitance being determined
according to:
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where X and Y are the real and imaginary parts of the output signal, measured experimentally, Vg is the
input signal, and f is the frequency of the input signal. The frequency response of the capacitive detector
based on Ni nanowires, for different glucose concentrations of test solutions is presented below as follows:



Fig. 47(a) illustrates the real and imaginary parts of the output signal, and Fig. 47(b) shows the capacitance
determined from (26), the concentrations of the test solutions being indicated in the legend.
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The calibration curves of the detector in the range of concentrations studied, at different frequencies, are
presented in Fig. 48. Due to the large surface/volume ratio and the high catalytic activity of Ni in the
glucose oxidation process, the capacitive sensors based on a matrix of Ni nanowires can thus sense glucose
successfully.

The application of the Ni nanowire matrix as glucose sensor has been presented at an international
conference [C8].

Fabrication of segmented Cu/Ni nanowires

This system is interesting in detecting magnetic fields via the magnetoresistive effect. To fabricate these
nanowires we used the technique of sequential deposition from a single electrolytic Watts bath, containing
a solution of NiSO, -6H,0 (225 g/1), NiCl, - 6H,0 (30 g/l), boric acid (22,5 g/l) and hydrated copper sulphate
(4 g/l). The same working configuration as above was used, with three electrodes. Two
polarization/voltametric curves recorded successively during the growth of Ni/Cu segmented wires are
shown in Fig. 49.
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The relatively flat region in the range (-200 mV, -850 mV) corresponds to the growth of the compound
Cu/Ni, while the region (-850 mV, -1200 mV) corresponds to the deposition of a compound significantly
richer in Ni (the element with the highest concentration in electrolyte).

The sequential deposition is achieved by controlling the electrode potential in pulses that vary between the
values favoring the deposition of one or the other metals (Ni or Cu). Figure 50 presents the programmed
sequence of the pulses of the electrode potential (up) and of the deposition current/recorded



chrono-ampermetric curve (bottom). The sequence of pulses is 0.5 s at -1100 mV (potential value that
favors the deposition of the metal with the highest concentration in electrolyte, i.e. Ni) and 6.0 s at -120
mV (potential value that favors the deposition of Cu).
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The structure of the wires in the obtained matrix was characterized by X-ray diffraction. The diffraction
spectra were recorded with a high-resolution diffractometer (Bruker D8 Discover), using the Cu-Km
radiation (A= 1.5406 A) in a grazing incidence configuration, to enhance the optical path of X rays in the
sample. The obtained X-ray spectra for two samples with pulse bases at -1100 mV and -1000 mV,
respectively, are illustrated in Figs. 51(a) and 51(b). These spectra confirm the increase of Ni content as the
potentials have increasingly negative values. The (111) peak of Au is due to the working electrode
(substrate).

Results obtained in the 2015 stage of the project

The 2015 stage of the project was focused on the electrical characterization of inhomogeneous and
segmented nanowires, similar to those fabricated in 2014 and in which the density of charge
carriers/scattering centers vary along the nanowire axis, as well as on the investigation of possible
applications of other inhomogeneous distributions of the interaction/scattering potential. The obtained
results are detailed in the following.

Electrical characterization of nanowires with an inhomogeneous, segmented distribution of charge
carriers/ scattering centers

The numerical simulations obtained in the 2014 stage of the project showed that the segmented
nanowires, in which the charge carriers/scattering centers vary stepwise along the nanowire axis, have the
greatest potential in electronic and optoelectronic applications. In this respect, in 2014 we have
electrochemically grown arrays of Ni/Cu segmented nanowires in the pores of an alumina template. As
already mentioned above, these nanowires are able to detect magnetic fields via the magnetoresistive
effect.

The template growth method allows the versatile fabrication of nanowires with a controlled diameter [25-
28]. We used alumina for growing arrays of segmented Ni/Cu nanowires, the array of pores in alumina
being obtained by a controlled anodization process, as described above. Inside the pores in the alumina
template, shown in the SEM image in Fig. 1, we have grown segmented nanowires via a relatively low-cost
electrochemical procedure, suitable for both metallic and semiconductor nanowires, which does not
require sophisticated equipment [29-31]. After the pores are filled, the template can be removed by
dissolution in an alkaline solution.

The segmented nanowires were sequentially grown from a single electrolytic Watts-type bath, as detailed
above, the growth control being assured by a stepwise variation of the electrode potential between the
values that favor the deposition of one or the other metals (Ni or Cu). Figures 52 and 53 represent SEM
images of the segmented Ni/Cu nanowires with a diameter of 100 nm, the different segments of the



nanowires being evident in the last image. The X-ray diffraction spectrum in Fig. 54 confirms the presence
of both elements, Ni and Cu, in the nanowires. Diffraction peaks attributed to Au and Si are also observable
in the X-ray spectrum, the presence of these peaks being justified by the fact that Au is the working
electrode and Si is the substrate on which the nanowires are grown.
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One of the issues that appeared during electrical measurements was the electric contact with the nanowire
arrays. To enhance the quality of the contact, we deposited nanowires higher than the template, in order
to form large-area metallic regions above the template. Figures 55 and 56 show the formation of such
metallic clusters and, respectively, of a continuous metallic layer above the nanowire array, which can be
used as electric contact. The insets in these figures are schematic side representations of the nanowire
array grown in the pores of the template, as well as of the clusters/continuous layer above the template.
The magenta (brown) segments correspond to Ni (Cu).

As expected, the electrical characterization of the array of segmented nanowires revealed a linear
dependence of the current on the applied voltage, the Ni/Cu interface having an ohmic behavior. The
electrical resistance, determined from the slope of the current-voltage dependence, has small values, of
few ohms, consistent with the conducting behavior of the nanowires. The value of the electrical resistance
varies in the presence of an applied magnetic field, as can be seen from Fig. 57, this behavior suggesting the
possibility of detecting small magnetic fields, lower than 0.3 T, with the array of Ni/Cu nanowires. These
results have been presented at an international conference [C9]. The decrease of the resistance with the
magnetic field, of about 1.4%, is caused by the magnetoresistive effect, which was observed also in other
segmented nanostructures containing ferromagnetic and diamagnetic materials grown by electrochemnical
deposition in the pores of a template [32, 33].
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Ballistic scattering on wrinkled potentials

We considered that it would be beneficial for the project, and, generally, for the advancement of
knowledge in the field, to attempt the study of analogies between the propagation of light and ballistic
electrons [1, 2] in a wider sense. As such, we investigated ballistic electron propagation through
inhomogeneous scattering configurations that attracted less attention recently, in particular through
wrinkled potential configurations. We have chosen this configuration based a recent article [34] dedicated
to propagation of elastic waves through a region with a wrinkled distribution of refractive indices/elastic
coefficients. The aim was to determine the way in which controllable and wrinkled potentials affect the
transmission of ballistic electrons in bidimensional semiconductors. In the configuration that we have
focused on, illustrated in Fig. 58, the potential energy as well as the number, period and width of the
wrinkles in the scattering region can be controlled via a wrinkled gate electrode. Such gate electrodes have
been already used in some field-effect transistors [35], or graphene-on-MoS: capacitors [36], but no
investigation of ballistic propagation (involving phase conservation at reflections/scattering) in such
structures exists. Because in the studied configuration a large number of parameters can be varied, we
expect an enhanced control on ballistic electron transmission, our study investigating also potential
applications of such structures.

The electron transmission coefficient was calculated using the formalism of the R matrix. In our particular
case, the scattering region contains a wrinkled scattering potential with a width of 1 nm, which is continued
by straight scattering potentials of the same width at the right and left sides of the structure. The variable

parameters are: the geometric amplitude of the wrinkle A, its period A, and the value (positive or negative)



of the scattering potential, denoted by V. In all simulations we considered only 5 wrinkles, the length of
the wrinkled potential being thus 5.
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The propagation of electrons is described by the time-independent Schrodinger equation, in which the uni-
particle Hamiltonian in the effective mass approximation is

72
H=——A+W(r), 27
om 2TV 27)
where r = (x,y) is the position vector and the effective mass is m = 0.0655 mq (as in GaAs). The studied
configuration is that of a bidimensional electron gas (2DEG) with width W = 20 nm and length L = 120 nm,
which includes also straight regions of the scattering potential. The amplitude V;, of the electrostatic
potential can be varied between —1 eV and 1 eV by modifying the gate potential.
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The dependence of the transmission coefficient, calculated in the R-matrix formalism, on the electron
energy E and V;is represented in Fig. 59 for A = 0 (straight gate) and in Fig. 60 for A = 3, 6, and 9 (top,
middle and bottom rows, respectively) and A = 16 nm, 18 nm and 20 nm (left, middle and right columns,
respectively). In all cases, the white region in the lower right corner indicates that electron propagation is
forbidden due to the transverse confinement, which imposes a minimum value for the energy of the first
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allowed mode in the structure. This minimum energy value depends on V,and vanishes for V< -0.12 eV,
when the spatial confinement effect is absent (a negative potential energy applied by the straight gate
electrode, narrower than the 2DEG region, induces an increase of the effective width of the structure,
whereas positive Vvalues cause a decrease of the 2DEG effective width).

Figures 59 and 60 indicate different behaviors of the straight and wrinkled scattering potential. In the first
case, the transmission increases uniformly with the number of open channels, while in the last case the
dependence of the transmission on E and V4is more complex, and is also dependent on the sign of V,.

The shape of the transmission coefficient for positive Vyvalues in Fig. 60 can be explained by the formation
of minibands in the structure containing periodic potential barriers, the width and location of which shifts
towards higher energies as the height of the potential barriers increases [37]. On the other hand, negative
V, values correspond to a periodic scattering structure with potential wells instead of barriers, structure
that favors interferences not only between quantum electron wavefunctions scattered by adjacent wells,
but also inside single wells. The superposition of these interferences can generate the complex structure in
Fig. 60.

For a better understanding of the difference between the effects of periodic potential barriers and wells on
the scattering wavefunction, we have replaced the wrinkled bidimensional scattering potential with a
onedimensional potential, consisting of barriers/wells with the same dimensions and heights as those
encountered by electrons propagating at different y coordinates in Fig. 58. The equivalent onedimensional
configuration is represented in Fig. 61(a), the solid (dotted) thick vertical lines representing the locations of
scattering regions for electron trajectories (thin lines of the same type) with y = 0 (y different from 0); the
solid gray line corresponds to the wrinkled potential. The widths of the onedimensional scattering regions
for y different from 0 are larger than for y = 0, and their position is no longer equidistant in a period A, as
opposed to the situation when y = 0.
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Figures 61(b)-(e) show the dependence of the transmission coefficient on E and V, for trajectories along y =
0, 0.33A, 0.66A and, respectively, 0.85A. Because in the equivalent onedimensional problem the straight
continuation to the left and right of the wrinkled scattering potential was not taken into account, the
region in which the propagation is forbidden due to the transversal confinement has the same width,
independent on V,. The width of this white region is thus the same as in Fig. 60 for Vo, = 0. From figures
61(b)-(e) it can be observed that, although the transmission coefficient shows similar minibands for positive
and negative V;values, their shape becomes more dissimilar as y (and the width of the scattering regions)
increases. Indeed, interferences can form inside sufficiently wide potential wells, as in Fig. 61(e), which
then can superimpose the wavefunction interferences between adjacent wells. In this situation, while the
transmission is hindered by wide barriers, in regions with positive V,, for negative values of this parameter



the constructive interferences in wide quantum wells generate significant transmission inside the
minibands.

This simple onedimensional model allows an understanding of the transmission coefficient behavior in the
bidimensional scattering problem. More precisely, the transmission dependence on E and Vyin the last case
(see Fig. 60) is similar to that in Fig. 61(f), obtained by adding the contributions of trajectories with different
y values.

The wrinkled scattering potential affects also the wavefunction in the structure. Propagation examples of
the (not normalized) probability distributions in the wrinkled structure for the fundamental mode at two
different electron energies are presented in figures 62 and 63 for V; = —-0.5 eV and, respectively, 0.5 eV.
These figures show the effect of the straight left and right continuation of the wrinkled potential on the
wavefunction: for the same energy, the wavefunction depends on the attractive (negative Vy) or repulsive
(positive Vy) nature of the scattering potential since this is not applied on the entire width of the structure,
but only on its central part. In addition, these figures illustrate the effect on the wrinkled scattering
potential on the phase of the transmitted wavefunction. For example, in Fig. 62, top, the constructive
interferences/wavefunction maxima appear in the center of the structure before the wrinkled region, and
are replaced by destructive interferences after scattering. In another example, in Fig. 63, top, the
transmitted wavefunction has a similar form as the incident one, but a different oscillation period along x.
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Numerical simulations show that, for a given form of the scattering potential/gate electrode, the
transmission coefficient can be controlled by the applied gate potential. Such a control is not possible/is
insignificant in straight scattering potentials with the same widths.

The obtained results emphasize the analogies between the propagation of ballistic electrons and that of
electromagnetic waves. If the formation of minibands is well known for light propagation in periodic
structures, and is encountered especially in the area of photonic crystal [38], the propagation of electrons
through periodic potential wells is analogous to light propagation in anti-resonant reflection optical
waveguides (ARROWSs) [39]. These structures are less studied, at least from the point of view of ballistic
electrons-electromagnetic radiation analogies.

The simulations presented above generalize these analogies and can contribute to the identification of
possible applications of wrinkled 2DEG scattering potentials. These results have been published in an ISl
journal [P8] and were presented at an international conference [C10].

Results obtained in the 2016 stage of the project

The 2016 stage of the project was dedicated to the comparison between the experimental results obtained
in 2014 and 2015, and the numerical simulations (activity 3.4). However, because the segmented nanowire
arrays that were electrically characterized in 2015 showed promising results as magnetic field sensors, we
have extended their experimental investigation in 2016, in order to study the effect of the nanowire
structure on the magnetic response, especially on the magnetoresistance, defined as AR/Rg, where

AR =R(B) - R(0) and Rg = R(0), with B the applied magnetic field.
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As a result, we have fabricated new arrays of segmented Ni/Cu nanowires, using the same procedure as
described above, with different widths of the Ni+Cu period. More precisely, the fabricated nanowires had
an average diameter of 90 nm and a length of 700 nm, which contains either 5 or 10 Ni+Cu periods. SEM
images of nanowire arrays grown up to the top of the template and, respectively, forming metallic clusters
above the templates are represented in Figs. 64 and 65. These clusters are used for optimum contacting
the nanowire arrays.

Typical measurements of the transversal resistance (in a magnetic field normal to the nanowire direction)
of the fabricated segmented Ni/Cu nanowire arrays containing 5 and, respectively 10 Ni+Cu periods are
shown in Fig. 66(a) and 66(b).

The experimental results confirm the expected increase of magnetoresistance with the magnetic field, as
well as the fact that the magnetoresistance is larger for nanowires with a shorter distance between the
ferromagnetic Ni segments/shorter periods. The last result, present also in single Ni nanowires or in sparse
nanowire arrays, can be explained by a stronger dipolar interaction between closer positioned Ni segments.
For Ni segments with small aspect ratio, the coupling between them is dominantly antiferromagnetic, but it
changes to mostly ferromagnetic for nanowires with Ni segments with a larger aspect ratio [40]. Regarding
the easy magnetization axis, it changes its direction depending on the aspect ratio value, but no agreement
on this effect exists yet [40, 41].
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On the other hand, in dense arrays of segmented nanowires, as those obtained in this project, significant
interactions can develop between Ni segments on adjacent nanowires. Therefore the modeling/prediction
of the magnetic response of such a nanowire array is difficult, the experimental results varying from one
array to the other, although obtained under similar conditions.

Another controversial effect is the magnetoresistance dependence on temperature. As can be seen from
Figs. 66(a)-(b), the room temperature (300 K) magnetoresistance is larger than that measured at lower
temperatures, say 200 K. Although such a result is beneficial from the point of view of applications, it does
not reflect a usual behavior. Therefore, we have extended the measurements on several nanowire arrays,
but the results were not conclusive, the magnetoresistance of some nanowire arrays being positive or
negative depending on temperature. An example of such a nanowire array is shown in Fig. 67, the
measurement data corresponding to temperatures varying from 100 K and 300 K, with a 50 K step, the lines
with lighter colors uniting data obtained at higher temperatures. Because of the dependence of the
interaction between Ni segments on the specific configuration of segments in an array, such a result is not
surprising.
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An extensive bibliographical research identified the cause of magnetoresistance increase in single Ni
nanowires and nanowire arrays [42, 43] with a temperature-dependent change of the magnetic anisotropy
direction due to the thermal stress originating in different thermal expansion coefficients of Ni nanowires
and the surrounding medium. These coefficients generally decrease with the diameter of the nanowires.

Because, as emphasized above, the magnetic response depends on many parameters, additional
experimental investigations are required to establish the magnetic response of a certain nanowire array. In
addition, the effects of temperature and stress on the contacts must be accounted for, since the nanowires
are not contacted individually but via the metallic clusters above the template. Such additional
investigations are beyond the scope of the present project.

The results regarding the application of segmented Ni/Cu nanowire arrays as magnetic field detectors were
submitted for publication [P9] and were presented at several international conferences [C12, C14-C17].

Regarding the agreement/disagreement between numerical simulations and experimental results, we
concluded that:

- the numerical simulations based on the R matrix formalism were applied on semiconducting structures in
the ballistic transport regime, in the presence of either attractive or repulsive impurities/scattering centers

- the numerical simulations showed that an inhomogeneous distribution of impurities, even an ordered
one, has a similar effect on the charge transport as a random distribution of impurities. The net effect is to
attenuate the relative minima and maxima of the transmission coefficient of electrons caused by
interferences between wavefunctions reflected by different interfaces, and to favor an almost linear
dependence of the current on voltage, typical for a diffusive charge transport



- from an experimental point of view, random and probably inhomogeneous impurity distributions in the
nanowires grown in the pores of the alumina template cannot be avoided. As such, it is expected that the
charge transport is diffusive, even in semiconducting nanowires. Therefore, the fact that we have
investigated metallic nanowires, with a short mean free path, which does not accommodate a ballistic
transport regime even at low temperatures, does not affect the comparison with numerical simulations

- thus, theoretical investigations on an inhomogeneous distribution of impurities shows that simulations
based the R matrix formalism do not necessarily improve the modeling of the charge transport or magnetic
response of segmented Ni/Cu nanowires arrays compared to a (semi)classical/phenomenological treatment

- however, even a phenomenological treatment of the nanowire arrays fabricated during the project cannot
provide a satisfactory modeling of the system without additional investigations regarding the relation
between the structure/morphology of the nanowire array and its magnetic response. Such investigations
are beyond the aim of this project, which focused on analogies between the propagation of light and
(quasi)ballistic electrons. In addition, as already mentioned, experimental results on single nanowires or Ni
and/or segmented arrays do not agree, an understanding of the magnetic response in such low-
dimensional systems depending significantly on the configuration/interaction of Ni segments in the specific
sample

- in summary, after investigating the application of Ni/Cu segmented nanowire arrays as magnetic field
detectors, we consider that predictive responses can only be obtained in sparse arrays, in which no
significant interactions exist between Ni segments on adjacent nanowires. Only in this case we can limit the
theoretical study/modeling with some success of the magnetic response of the system to that of an
individual nanowire

- on the other hand, it must be emphasized that the R matrix formalism applied to ballistic systems with
optical analog lead to interesting theoretical results and practical applications in systems in which the
distribution of scattering centers is periodic. For instance, a novel method was suggested for modulating
the electron transmission via positive or negative voltages applied on a wrinkled gate, narrower than the
two-dimensional electron gas

- even for interfaces between homogeneous media, the light-ballistic electrons analogy lead to unexpected
applications. For example, we have shown during this project that ballistic electrons can be steered by a
simple interface between a material with an isotropic effective mass tensor and another one with a tilted
non-isotropic effective mass tensor

- the last two theoretical predictions could not be demonstrated experimentally during the project, the
technology necessary for fabricating the devices suggested by numerical simulations being not available in
the research center in which the project was implemented

- in conclusion, we consider that the experimental results obtained during the project can be described by
theoretical models (even phenomenological in some cases) and can be simulated with the developed
algorithms if the magnetic interactions between the ferromagnetic Ni segments in the pores of the
template are known. This knowledge requires, however, additional investigations, far beyond the aim of
the present project. On the other hand, based also on bibliographical references, we consider that the
computing algorithms developed during this project can simulate the charge transport in systems with
arbitrary, including inhomogeneous, distributions of scattering centers, and that the results predicted by
the theoretical simulations performed during this project can and will be demonstrated experimentally
using advanced technologies
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