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The project  PN‐II‐ID‐PCE‐2011‐3‐0224, entitled 

Analogies between electron transport in nanostructures and light propagation 

is  focused on  the detailed study of analogies between  the  transport of charge carriers  in nanostructures 
and the propagation of electromagnetic waves, with the aim of developing analogies that have not been 
evidenced  theoretically  and/or  experimentally  up  to  now.  The  studied  nanostructures  include  common 
semiconductors,  in which  electrons  are  described  by  the  Schrödinger  equation  and  graphene,  in which 
electrons satisfy a Dirac‐type equation. In the first case, the analogies are justified by the formal similarity 
between the time‐independent Schrödinger equation and the Helmholtz equation, while in the second case 
the spinorial wavefunction  in graphene can be put  into correspondence with the polarized states of  light, 
the components of the electromagnetic field, or the  light propagation  in hexagonal photonic crystals that 
show no bandgap. The aim is that, by emphasizing the differences and similarities between the propagation 
of electrons and photons, to contribute to the development of new devices based on the electron‐photon 
analogy,  and  to  understand  better  the  charge  transport  in  disordered  nanostructures  with  an 
inhomogeneous distribution of scattering centers. 

The project started with the study of analogies between ballistic electrons described by either Schrödinger 
or Dirac equations and light (2011‐2012), while the work developed in the period 2012‐2013 is dedicated to 
numerical simulations and experimental investigations of electron transport  in disordered nanostructures, 
with an inhomogeneous distribution of the scattering centers. 

 

Results obtained in the 2011 stage of the project 

In 2011 we focused on the effects of  light polarization on the analogies ballistic electron‐electromagnetic 
field, corresponding to the activity 1.1 in the project. Ballistic transport takes place in nanostructures with 
dimensions smaller than the average distance between two successive collisions of an electron with other 
electrons or with the impurities in the semiconductor. 

The polarization of the electromagnetic field influences light propagation through the boundary conditions 
at the interface between media with different parameters (in particular, refractive indices).  

The influence of polarization on the analogies between light and Schrödinger ballistic electrons  

Under stationary transport conditions, the wavefunction Ψ of ballistic electrons with effective mass m and 
constant energy E in common semiconductors satisfies the time‐independent Schrödinger equation  
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where V is the potential energy. This equation is formally similar with the Helmholtz equation satisfied by 
monochromatic  light  beams with  frequency  ω and wavevector  k  in media with  constant  and  isotropic 
electric permittivity ε and magnetic permeability μ  [1]: 

022 =+∇ FF k .                                                                                                                                                             (2) 

In (2), F stands for any component of the electric E or magnetic H fields, and  || k== εμωk . The vectors 

E, H and k are orthogonal and form a right‐handed system.  

Although, as follows from (1) and (2), Ψ is similar to any component of the fields E and H if k is replaced by 

the electron wavevector γ, where  h/)(2|| VEm −== γγ , the quantitative analogies between the set of 

relevant parameters for electrons, m and  )( VE − , and those for light (ω, ε and μ) at propagation through a 
succession of different regions, as in Fig. 1, depend on the polarization of the electromagnetic field, which 



determines the continuity conditions at  interface. Besides these conditions we  impose the equality of the 

group  velocity,  given  by  εμ/1   for  plane  electromagnetic  waves,  and,  respectively, 

 for electrons. mmi /||/]/Re[ 2* γhh =ΨΨ∇⋅Ψ
 

in 

r 
t 

y 

x θin 
θr θt 

mediu 1                   mediu 2 

               

 

y 

x 

Ein 
Er 

Et 

z 

Hin Hr 

Ht 

Hin Hr 

Ht 

Ein Er 

Et 

θin θin θr θr 

θt θt 

             TE                                    TM  
Fig. 1                                                                                     Fig. 2 

We consider electromagnetic fields/electron beams propagating in the (xy) plane, and label with indices 1 
and 2 the respective parameter values in the incidence medium 1 and transmission medium 2. Irrespective 
of light polarization, the tangential components of k and γ are conserves, according to the Snell law, which 
can be expressed as 

trin kkk θθθ sinsinsin 211 == ,           trin θγθγθγ sinsinsin 211 == ,                                                                   (3) 

from which  it  follows  that  inr θθ = .  In  (3)  inθ ,  rθ   and  tθ   are  the  angles  of  incidence,  reflection  and 
transmission of the electromagnetic field/electron beam. Other continuity conditions, dependent on  light 
polarization, require the conservation of the tangential components of E and H, whereas  for electrons Ψ 
and   must be continuous at the interface, with   the versor along the x direction.  m/)ˆ( x⋅Ψ∇ x̂

Until now, a  set of analogous parameters  for  the propagation of electrons and of  light were  found only 
when  the electromagnetic  radiation  is polarized TE  (transverse electric) or TM  (transverse magnetic)  [1]. 
The orientations of the fields E and H for the polarizations TE and TM are illustrated in Fig. 2. In both cases,  
the  electronic  wavefunction  can  be  put  into  correspondence  with  the  vector  potential  A  of  the 
electromagnetic field, which satisfies equation (2) [2] and is related E and H as  AE ωi−=  and, respectively, 

μ/)( AH ×∇=  if the scalar potential of the electromagnetic radiation vanishes. 

In  the 2011 stage of  the project, we have studied  the analogy between  the scalar electron wavefunction 
and the vector potential of a light wave linearly polarized at an angle α with respect to the z axis. The case 
α = 0 corresponds to a TE wave, while  2/πα =  describes a TM wave. In order to obtain a set of analogies 
for different values of α, we had to find first a new set of analogous parameters for the TE and TM waves, 
because  in  [2]  the  effective  mass,  electron  energy  and  even  the  wavefunction  were  equivalent  to 
parameters with different dimensionalities for the TE and TM cases. 

In  this  respect,  we  have  expressed  the  incident,  reflected  and  transmitted  electron  wavefunction 
components as  
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and analogous for the TE wave:  
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From the continuity conditions at x = 0 for the electron wavefunction and the tangential components of E 
and H we obtain 
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at which we add  the similarities between k and γ   and between  the group velocities  εμ/1  and  m/γh . 

These similarities lead to the set of analogies in Table 1, where the effective mass, electric permittivity and 
magnetic  permeability  were  written  as  products:  rmmm 0= ,  rεεε 0= ,  rμμμ 0= ,  with    the  free 

electron mass  and 
0m

0ε   and  0μ   the  dielectric  constants  of  the  vacuum,  the  parameters  labeled with  r 

denoting relative values. The refractive index of the electromagnetic field is defined as  rrn με= . 

Table  1.  Set  of  analogous  ballistic  electron‐light  parameters  for  electromagnetic  fields  with  different 
polarizations 

Electromagnetic field Electronic wavefunction 

TE  TM  Polarized at an angle α 
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Similarly, for TM polarization, the incident, reflected and transmitted vector potentials are 

)]sincos(exp[)cosˆsinˆ( 1 ininininin yxikA θθθθ +− yx ,          , 

.                                                                                                    (7) 
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)]sincos(exp[)cosˆsinˆ( 2 ttttt yxikA θθθθ +− yx

and the continuity conditions at the interface for the tangential components of E and H require that 
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The new set of analogous parameters for electrons and the electromagnetic field is presented in Table 1. As 
can be seen, the analogous parameters for the TE and TM cases have now the same dimensionality. 

A more complicated situation is encountered for a linearly polarized wave at an angle α with respect to the 
z axis. In this case, if we denote with  αcos|| AA =  and  αsinAA =⊥ , the vector potentials of the incident, 

reflected and transmitted waves can be written as  

)]sincos(exp[)]cosˆsinˆ(ˆ[ 1,||, inininininin yxikAA θθθθ +−+ ⊥ yxz ,      

)]sincos(exp[)]cosˆsinˆ(ˆ[ 1,||, rrrrrr yxikAA θθθθ +−++ ⊥ yxz ,                                                                         (9) 

, )]sincos(exp[)]cosˆsinˆ(ˆ[ 2,||, tttttt yxikAA θθθθ +−+ ⊥ yxz

and the interface conditions are  
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The requirements (6, left) and (10) do not allow the direct finding of a set of analogous parameters because 
in  (10)  there are  terms  that depend on cos(.) and other  independent of  this  function. However, a set of 
electron‐light analogous parameters can be obtained (see Table 1) by adding the two equations in (10) and 



comparing the result to the interface conditions for electrons. To emphasize the different character of the 
terms with the same orientation obtained in this manner, the second equation in (10) was first multiplied 
by  the  imaginary number  i, which  allowed  the  equivalence  between  the  electronic wavefunction  and  a 
complex number.  

As can be seen from Table 1, from the set of parameters for a  linearly polarized  light field at angle α one 
can obtain the corresponding sets for TE and TM polarizations  in the appropriate  limits. But, unlike for TE 
and TM cases,  this set of parameters cannot be directly used  to design optical structures with  the same 
reflection  and  transmission  coefficients,  R  and  T,  as  the  corresponding  nanostructures  for  electrons 
because R for a linearly polarized field at angle α  is given by [3] 
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i.e. is obtained by treating independently the TE and TM components.  

The  angle  α  is,  however,  a  parameter  that  can  be  easily  tuned  experimentally  in  optical  structures  to 
simulate  the  propagation  of  ballistic  electrons with  different  energies.  For  instance,  in  Fig.  3 we  have 
represented  the dependence on energy and  incidence angle of  the  reflection  coefficient  for an electron 
beam with  =  0,  =  0.2  eV,  =  0.08 ,  and  =  0.15 , while  in  Fig.  4 we have displayed  the 
dependence of R on α and   at an  interface between two non‐magnetic media with  = 1,  = 2.5.  In 
both cases higher values correspond to darker colours (R takes values between 0 and 1). 
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                           Fig. 3                                               Fig. 4                                                          Fig. 5 

The  same  reflection  coefficient  R  for  the  electromagnetic  field  and  electron  beam  can  be  obtained  by 
correlating the parameters α and E. For example, in Fig. 5 we have represented such a correlation for the 
case above of electrons/light  incident at the angles 40°/50°  (solid  line), 15°/50°  (dotted  line) and 60°/77° 
(dashed  line).  It should be emphasized  that the choice of different  incident angles  for electrons and  light 
makes it easier to choose optimal parameters for quantum/optical systems with the same R.  

Influence  of  polarization  on  the  analogies  between  electromagnetic  field  and  the  spinorial  electron 
wavefunction in graphene 

Because  of  the  vanishing  effective mass  of  charge  carriers  in  graphene  and  of  their  linear  dispersion 
relation,  similar  to  the  case  of  photons,  the  analogy  between  the  propagation  of  charge  carriers  in 
graphene and the electromagnetic field seems to be more straightforward. However, up to now no set of 
analogous  graphene/light parameters was  found  since  the  charge  carriers  in  graphene have  a quantum 
property with no classical analog: chirality.  

Graphene  is  a  bidimensional  crystal,  assumed  to  extend  in  the  plane  (xy),  and  consisting  of  a  periodic 
hexagonal  arrangement of  carbon  atoms  [4]. The  spinorial wavefunction  in  graphene, with  components 

 (T indicates transposition), satisfies the equation ),( 21 ψψ=ΨT
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where    is  the  Fermi  velocity  and 300/cvF ≅ xγ   and  yγ   are  the  components  of  the  charge  carrier 

wavevector  γ   along  the directions  x and  y, with wavenumber  || γ=γ . The dispersion  relation obtained 

from  (12)  is  linear:  || γFvVE h±= ,  the positive and negative signs corresponding  to electron and hole 
states, respectively.  

The reflection coefficient at an interface between two regions with different potential energies is found by 
expressing  the  wavefunction  in  each  region  as  a  superposition  of  forward‐  and  backward‐propagating 
components:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+

−+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
)]cosexp()cosexp([

)cosexp()cosexp(
)sinexp(

2

1

θθγθθγ
θγθγ

θγ
ψ
ψ

ixiBixiAs
xiBxiA

yi                                                              (13) 

and imposing the boundary condition that Ψ is constant at the interface. In (13),  . The Snell 
law becomes 
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and the reflection coefficient can be written as  
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The  spinoriala wavefunction  in graphene has been put  into  correspondence with  the polarized  states of 
light  [5], or with a TE electromagnetic  field  [6], but no similar graphene/light boundary conditions/set of 
analogous parameters was identified. The analogy graphene/polarized light at angle α was studied for the 
first time in the 2011 stage of this project.  

     Fig. 6         Fig. 7 

In a similar manner to the case of Schrödinger electrons, a correlation between E and α can be found also 
in  this  case.  In  Fig.  6  we  have  presented  the  dependence  on  the  incidence  angle  and  energy  of  the 
reflection coefficient of electrons  in graphene for   =0,  = 0.2 eV, and  in Fig. 7 we have  illustrated the 
correlation between E and α  to obtain  the  same R as  in  the optical  case, with  the  same parameters as 
above, in Fig. 4. The solid, dotted and dashed lines correspond to electrons/light incident at angles 15°/75°, 
15°/70° and 25°/75°, respectively. As can be seen from Fig. 7, the same R as for electrons can be obtained 
in the optical case in a wider or narrower range of E for different incidence angles for the electromagnetic 
field.  The  energy  range  E  is  chosen  such  that  the  charge  carriers  in  graphene  are  electrons;  a  similar 
treatment  holds  for  holes, which  transport  electric  charge  for  E  <  0. Moreover,  Fig.  7  shows  that  the 
quantitative electron/light analogy on a wide energy range cannot always exist for a single incident angle. 
For  instance,  to obtain  the R  range  for  electrons with  energies between 0.2  eV  and 0.5  eV,  the optical 
analog needs to be illuminated at two incidence angles, in each case the polarization being tuned such that 
the range of the reflection coefficient is the same as for electrons (see, for example, the solid line, for which 
no solution for α exist for energies E higher than 0.36 eV).  
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Although  in  the  simulations  above,  irrespective  of  the  equation  satisfied  by  electrons  (Schrödinger  or 
Dirac), only one interface between media with different characteristics was considered, the results can be 
generalized  for  a  succession  of  regions with  different widths  if,  besides  the  equality  condition  for  the 
reflection coefficient at each interface, the phase matching requirement: 

eleloptopt LLk θγθ coscos =                                                                                                                                      (16) 

is also  imposed, where  the  indices opt and el  refer  to  the optical and electronic  case,  respectively, and 
,   are the widths of the regions traversed by optical and electron beams. optL elL

Unlike the set of analogous electron/light parameters used up to now, which required the variation of light 
frequency or refractive  indices to obtain the same R as for electrons propagating through a succession of 
regions with different parameters, the identification of light polarization as an easily controllable parameter 
in  experiments  offer  the  possibility  to  design  simpler  optical  structures  with  the  same  reflection  and 
transmission characteristics as the corresponding ballistic nanostructures. 

The results obtained in the 2011 stage of the project were published in an ISI journal (publication [P1]). 

 

Results obtained in the 2012 stage of the project 

In the 2012 stage we have studied the analogies related to the activities 1.2 (Analogies between optics and 
the propagation of electrons  in anisotropic media/type  II heterostructures), 1.3  (Analogies between  light 
propagation in metamaterials and nanostructures), and 1.4 (Analogies between spin/applied magnetic field 
in nanostructures and polarized states of  light) of the project.  In addition, we have developed algorithms 
for simulating inhomogeneous and disordered nanostructures. 

Analogies between electromagnetic field and ballistic Schrödinger electrons in anisotropic media/type II 
heterostructures, metamaterials or in the presence of spin effects  

Regarding activity 1.2, based on  the analogy with amphoteric  light  refraction  [7], we have demonstrated 
that at  the  interface between an  isotropic medium, denoted by 1, and an anisotropic one, denoted by 2 
(see  Fig.  8)  the  current  density  of  electrons,  j,  is  refracted  at  an  angle  2φ , which  is  different  from  the 

refraction angle  2θ  of the wavevector k, these angles being identical in the isotropic medium 1:  11 θφ = . In 
particular, at the interface between the isotropic crystal Bi2Se3 and the anisotropic crystal Bi2Te3, when the 
ellipsoid of the effective mass is oblique with respect to the interface, the signs of the angles  2φ  and 2θ  can 
differ  for  a wide  range of  incidence  angles  (see  Fig.  9),  the  transmission  coefficient of  electrons having 
significant values in the whole range, as can be seen from Fig. 10. 
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                                 Fig. 8                                                      Fig. 9                                                       Fig. 10  

As an application, we have shown that a point‐like electron source, with an angular divergence of 60o can 
be collimated after refraction at the  interface Bi2Se3/Bi2Te3 situated at x = 4 nm  in Fig. 11,  its divergence 

)30()30( 222 °−−°=Δ φφφ  being smaller  than  the  initial value.  In addition,  the electron beam propagates 

now at an angle  2/)]30()30([ 22 °−+°= φφφst . The electron  trajectories are represented with red  lines  in 
Fig. 11, the blue lines indicating the virtual electron source, and the dependences on the electron energy of 
the angles  2φΔ  and  stφ  are illustrated in Fig. 12. Figure 13 represents the probability of finding an electron 



that  passes  through  the  interface  situated  at  x  =  4  nm,  the  oscillations  in  the  left  part  of  the  figure 
indicating the interference between the incident and reflected wavefunctions. 

     

                              Fig. 11                                                    Fig. 12                                                         Fig. 13 

These results, which suggest a new manipulation mechanism of ballistic electrons, were published in an ISI 
journal [P2] and were presented at an international conference [C1]. 

The propagation of electrons in type II heterostructures involves a correlation between the wavefunctions 
the conduction and valence bands,  cψ  and  vψ , the total wavefunction having  (up to a phase factor) the 

form  ,  where ),1(),( βψψψ == vc
T )/( vEEPk −= hβ ,  with    the  wave‐

number, P a measure of the correlation between the conduction and valence bands and   the edges of 

this  bands  [8].  This  wavefunction  is  similar  to  the  Jones  vector  ,  where    are  the 

components on the x,y axes of the electric field that propagates along the z direction [3]. In particular, the 
wavefunction in type II heterostructures is identical to the Jones vector of light polarized at an angle θ with 
respect to the x axis, if 

PEEEEk vc h/)])([( 2/1−−=

vcE ,

),( yx
T EEJ = yxE ,

βθ =tan . The correlation between the electron energy E and the polarization angle 

θ  of  light  is  represented  in  Fig.  14 with  solid  line  for  InAs,  the  change  of  this  angle  at  the  InAs/AlSb 
interface,  θΔ ,  being  represented with  dotted  line;  the  interface  is  similar  to  a  device  that  rotates  the 
polarization angle of light.   

Regarding  activity  1.3, we  have  shown  that  the  electronic  equivalent  of  the  optical metamaterial, with 
dielectric constants ε < 0, μ < 0, is a periodic medium consisting of layers denoted by 1 and 2, with widths 

, effective masses  , 21 ddd == 01 >m 02 <m  and potential energies  01 <−VE ,  , surrounded 
by  layers with  , .  In  this metamaterial  regime,  the  transmission  T  through  a 

structure with N  periods  is  significant,  even  if  the wavenumbers  , i  =  1,2,  in  both 
layers  are  imaginary,  as  can  be  seen  from  Fig.  15  for 

02 >− VE
0, >outin mm outin VVE ,>

h/)](2[ 2/1
iii VEmk −=

01 04.0 mm = ,  =1V 0.4  eV,  ,  V2=0, 
, 

02 02.0 mm −=
003.0 mmm outin == 0== outin VV , and N = 10, d = 2 nm (solid line), N = 10,  d = 3 nm (dotted line) and N 

= 5, d = 2 nm  (gray  line). This  result  generalizes  the  class of nanostructures  similar  to metamaterials  in 
optics [9], with specific propagation characteristics.  

             
Fig. 14                                                                                       Fig. 15 

The  important  parameters  in  high‐frequency  electronic  circuits  are  the  transfer/traversal  times  through 
nanostructures. Therefore, we have studied  the dependence on  the electron energy  in  the metamaterial 



regime of  the delay  time  ]/)(Arg[ Etph ∂∂= hτ , relevant  for quasi‐monoenergetic electron pulses, and of 

the traversal time  )(/ xvdx gtr ∫=τ , relevant for monoenergetic electron beams;   is the group velocity 

of  electrons  propagating  along  the  x  direction.  For  the  situations  in  Fig.  15,  these  dependences  are 
represented with the same line type in Fig. 16 and, respectively, Fig. 17, the times being normalized to the 
traversal  time  of  a  structure  of  width 

)(xvg

121 )( dddNL ++=   in  the  absence  of  the  periodic  medium, 

inin kLm h/0 =τ . It can be observed that there are energy ranges in which  0ττ <ph , the periodic structure 

accelerating the electron transport, but in all cases (at least in the example considered here)  0ττ >tr .  

             
Fig. 16                                                                                    Fig. 17 

These  results  were  published  in  an  ISI  journal  (publication  [P3])  and  presented  at  an  international 
conference [C2]. 

Regarding activity 1.4, we showed that the propagation of the polarized states of light, represented by the 

Jones vector  , is analogous to electron transport  through nanostructures in the presence of 

the Rashba effect  [10]. The Rashba effect  is a  spin‐orbit  coupling  that  separates  the energetic  states of 
electrons with  spin  up  and  down  due  to  the  local  electric  field,  perpendicular  to  the  interface  of  the 
heterojunction, and caused by  the  inversion asymmetry of  the structure.  In a bidimensional electron gas 
located  in  the  plane  (x,y),  in  the  presence  of  the  Rashba  efect  (or  of  the  equivalent  magnetic  field 

),( yx
T EEJ =

BgkB μα /2= ) the Hamiltonian is  , where α is the Rashba coefficient, 
 are the Pauli matrices and   are the components of the electron wavevector k along the directions 

x,y.  The  eigenfunctions  of  the  electrons with  spins  up  and  down  are  given  by  (up  to  a  phase  factor) 

,    with  ,  and  are  similar  to  the 

perpendicular Jones vectors of  light  linearly polarized at the angles 

)(2/22
2 yxxyD kkmkH σσα −+= h

yx,σ yxk ,

))2/sin(),2/(cos( φφψ −=+
T ))2/cos(),2/(sin( φφψ =−

T )/arctan( xy kk=φ
2/φ−  and  2/2/ φπ −  with respect to 

the x axis, or of light circularly polarized left/right [3]. An interesting application of this analogy is electron 
transport through an interface between a region in which the Rashba effect is absent and a region in which 
this effect is present. At normal incidence, the spins of incident electrons suffer a precession, as in the case 
of the optical Faraday effect, whereas at oblique incidence an electron beam splits in two beams with spins 
oriented perpendicular to the wavevectors of the two beams.  

This  phenomenon  is  analogous  to  the  double  refraction  encountered  in  optics  in  uniaxial  crystals, with 
ordinary and extraordinary  refractive  indices   and  . The Rashba effect  is difficult  to be observed  in 
bidimensional  electron  gases  because  the  electrons  are  not  monoenergetic,  are  not  incident  on  the 
interface  at  the  same  angle,  their  spin  cannot  be  controlled  precisely  and,  often,  the  Rashba  effect  is 
accompanied by other phenomena such as the Dresselhaus effect [11], which contributes to the electron 
Hamiltonian with  the  term 

en on

)( yyxx kk σσβ − .  The  analogy with  classical  optics  can  determine which  of 

these  factors  limit  the observation of  the Rashba effect. An  interesting  result  is  that,  if  the Dresselhaus 
coefficient becomes  αβ = , the wavefunction is independent of the electron momentum, which enhances 
the probability of observing the Rashba effect.  

A  qualitative  electron‐electromagnetic  field  analogy  in  the  case  of  the  Rashba  effect  can  be  found,  for 
example, imposing the requirement that, for a crystal with given   and  , the optical incidence angle 0n en 1δ  
is chosen such that the propagation angle of the ordinary wave,  oδ ,  is equal to the propagation angle of 



electrons with spin up or down in AlGaN/GaN in the presence of the Rashba effect, the propagation angle 
of the extraordinary wave,  eδ , being found from the Snell law. In Fig. 18 we have presented with black or 

gray  lines,  as  a  function  of  α  normalized  at  00 /2 meh=α ,  the  solutions  found  for  the  optical 
propagation  angles  corresponding  to  electrons with  energy  E  =  0.25  eV  incident  at  15o   on  the Rashba 
medium with spin down or up, respectively, for  = 1.67 and  = 1.55. Similar dependences, on electron 
energies are represented in Fig. 19, for 

0n en
0αα = .  

         

Fig. 18                                                                                     Fig. 19 

In the presence of both Rashba and Dreselhaus effects, when  αβ = , the optical analog of the electron  gas 

is a uniaxial crystal with the optical axes oblique to the interface, at an angle χ. By imposing the condition 
of  equality between  the  propagation  and  reflection  angles of  electrons with  spin down  and  the optical 
extraordinary wave,  the dependence of  the optical  axes  tilt on  the  energy of  electrons with  spin down 
incident at an angle of 15o    is  illustrated  in Fig. 20  for  βα = = 005.0 α (solid black  line),  007.0 α   (dotted 

black  line),  01.0 α   (dashed  black  line),  015.0 α   (gray  solid  line)  si  02.0 α   (gray  dotted  line).  For  other 
conditions, for example, equality of electron and optical propagation angles for χ = 20o, the incidence angle 
on the uniaxial crystal varies with the electron energy as shown in Figure 21. 

The results obtained on the analogy between the electromagnetic fields and electrons  in the presence of  
spin‐orbit interaction were published in [P6]. 

 

   

Fig. 20                                                                                  Fig. 21 

Analogies between Dirac ballistic electrons and the electromagnetic field in gyrotropic and electro‐optic, 
and complex conjugate media and in photonic crystals with Dirac points 

These analogies encompass the project activities 4.2 (Design of structures in which the components of the 
electromagnetic  field  propagate  similarly  to  electric  charges  in  graphene  devices),  4.3  (Effects  of  light 
polarization on the analogies between photonic crystals with Dirac points and graphene), and 4.4 (Effects of 
different boundary conditions on the analogy between the electromagnetic field and graphene). We have 
found  that activity 4.4  cannot be  treated  independently  from 4.2 and 4.3,  so  that  the  investigation was 
focused on  two  subjects:  analogy  electromagnetic  field‐graphene  (which  encompasses  4.2  and  4.4)  and 
analogy photonic crystals with Dirac points‐graphene (which encompasses 4.3 and 4.4). 



Regarding  the  analogy  electromagnetic  field‐graphene, we  have  shown  that  the  propagation  of  electric 
charges  in  graphene,  characterized  by  chirality,  is  similar  to  light  propagation  through  gyrotropic  and 
electro‐optic  media,  and  through  complex  conjugate  media.  In  particular,  the  Dirac  equation  for  the 

spinorial  wavefunction  in  graphene,  ,  and  the  equation  describing  the  propagation  of 

polarized  states of  light with wavevector α  through a medium with gyrotropic  coefficient  γ and electro‐
optic coefficient β are similar [12]: 
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Fig. 22 

Thus, the transmission coefficient of electrons with Fermi velocity   at an  interface between two media 
with different potentials V in graphene (Fig. 22a),  , and the ratio of the amplitudes of the independent, 

elliptical polarization  states of  light,  , are  similar,  i.e. 

Fv
grt

polt grpol itt = ,  if  the variation of  light polarization 

)/arctan( βγθ =Δ   at  an  interface  between  media  2  (air)  and  1  (Cd0.5Mn0.5Te),  as  in  Fig.  22b,  is 

appropriately correlated with the incidence angle of electrons in graphene. The dependence of  θΔ  on  1φ  

and, respectively, that of the ratio between the magnetic field (which determines γ) and the electric field 
(which determines β) on  1φ  are  illustrated  in Fig. 23,  for  the  range of  incidence angles  for which such a 
quantitative analogy exists.  

 

          

Fig. 23                                                                                            Fig. 24 

In  the  second  case,  the  propagation  of  electrons  through  an  interface  in  graphene  is  put  into 
correspondence with light propagation through an interface between air and a complex conjugate medium 
(Fig.  22c),  in which  the  relative  dielectric  constants  are  complex:  )( ibamr +=ε ,  ibar −=μ ,  but  the 

refractive  index    is real [13]. For m = 1, a = 1.5 and b =  ‐0.05, the optical 

transmission  coefficient,  ,  is  identical  to    if 

2/1222/1 )]([)( bamn rr +== με

ccmt grt )]cos(1/[)]sin(sin[cos 21211 φφφφφ ++−=F  

. This condition can be satisfied on a wide range of light incidence angles, 6° < 0]Im[ =− ccmt 1θ  < 42°, the 
solid red and dotted blue lines in Fig. 24 corresponding to the optical incidence angles 10° and 40°. 



The obtained  results, which  confirm  the  fact  that  the electron  chirality  in graphene  can be mimicked  in 
classical optical  systems, were published  in an  ISI  journal  [P4], presented at an  international  conference 
[C3] and at an international Heraeus seminar (two contributions, [C4] and [C5], the first one being invited). 

Regarding  the analogy photonic crystals with Dirac points‐graphene,  the study started  from  the  fact  that 
Dirac points in photonic crystals exist only for TE polarization and not for TM polarized light. For TE light the 
Dirac equation can be written as   
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(similar to that in graphene) and is satisfied by the degenerate Bloch states  21,Ψ  in the corners of the first 
Brillouin zone, with   the light velocity in the homogeneous medium and Dv Dω  the frequency at the Dirac 
point. The graphene‐photonic crystals with Dirac point analogy was investigated from the point of view of 
the linear dispersion relation for light, as in graphene, in photonic crystals surrounded by regions in which 
light  satisfies  the  Maxwell  equation,  respectively  regions  in  which  electrons  satisfy  the  Schrödinger 
equation. This problem has been  treated  independently  in optics  [14] and  in graphene devices  [15],  the 
results  suggesting  that  the  transition  between  the Maxwell‐Dirac‐Maxwell  equations  for  photons  and 
Schrödinger‐Dirac‐Schrödinger for electrons  lead to a dramatic decrease of transmission compared to the 
situation  in  which  no  such  transformation  of  the  governing  photon/electron  equation  occurs.  The 
advantage of correlating the results in optics and graphene is that one can fabricate a photonic crystal that 
simulates  the  propagation  of  electrons  in  contacted  graphene.  This  problem  is  important  since  the 
influence of contacts, in which electrons satisfy a Schrödinger equation, on the performances of graphene 
devices is not fully understood.  

The graphene‐photonic crystal analogies are not unique since they depend on the wavefunction continuity 
conditions at  the  contact/graphene  interface.  For  instance,  the dependence of electron  transmission on 
energy and the incidence angle vary as a function of the continuity conditions, but these conditions are not 
known and there is no motive to favor a certain condition. Thus, fabricating a photonic crystal and studying 
its transmission as a function of the incidence angle could solve the problem of finding the proper boundary 
conditions  at  the  interface  between  graphene  and metallic  or  semiconducting  contacts;  the  aim  is  to 
increase the transmission as much as possible. For example, in Fig. 25 (a) and (b) we have represented the 
transmission  dependence  on  the  effective masses,    and  ,  of  electrons  in  the  contacts,  for  two 
different  boundary  conditions.  As  can  be  seen,  optimum  transmission  can  be  achieved  for  identical  or 
different contacts, depending on the boundary conditions. 

1m 3m

Fig. 25  (a)   (b) 

Development of algorithms for simulating inhomogeneous and disordered nanostructures  

Besides  studying  the  analogies  between  ballistic  electrons  and  the  electromagnetic  field, we  started  to 
develop computational algorithms for simulating the electric transport  in  inhomogeneous and disordered 
nanostructures [16]. The aim is to find the configuration that is closest to an optical medium that amplifies 
or absorbs electromagnetic radiation.  



The major difficulty in the treatment of charge transport in nanostructures, seen as open quantum systems, 
is  to determine  the wavefunctions  for  a  sufficiently wide  energy  range,  necessary  to  solve  the  coupled 
Schrödinger  and  Poisson  equations.  The  R matrix  formalism  could  solve  this  problem.  It  involves  two 
computing  steps:  (i)  the calculation of energy eigenvalues  for  the considered physical  system, with  fixed 
boundary conditions, and (ii) the calculation of the wavefunction and the transmission coefficient at each 
energy with a much lower computational cost. 

In  this  respect,  in  the  R  matrix  formalism,  the  physical  system  is  divided  in  an  internal  region  0Ω  
(“scattering region”, in which the actual interactions take place) and an external region  , corresponding 
to  the  contacts  (semi‐infinite  and  translational  invariant,  with  a  confining  potential  that  defines  the 
transport channels). The geometry of the problem is described in Fig. 26. In this case, the wavefunction of 
an electron incident in channel ν  from contact s is 
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    Fig. 26 

the elements of the scattering matrix S being related to the transmission functions as  . 
In the scattering region the wavefunctions are solutions of the stationary Schrödinger equation in the self‐
consistent potential  , and are expressed  in the complete system of the wavefunctions 

2
'' |)(|)( ESET νννν =

)(rscW )(rlχ  of an 

auxiliary Wigner‐Eisenbud problem with eigenenergies  . To find the matrix S it is necessary to determine 
first the function R defined as 

lE

)/()'()()2/();',( *2
ll l EEmER l −−= ∑ rrrr χχh                                                                                                      (20) 

from which S is obtained as  , where I is the unit matrix, R is the matrix 

with elements determined by the R function and κ  is a diagonal matrix with elements determined by the 
wavenumbers of the electrons incident in different channels. 

1])/(][)/([ −−+−= κκ RmiIRmiIS

To  implement numerically  the  formalism of  the R matrix we used an  iterative  self‐consistent method  to 
solve the system of coupled Schrödinger and Poisson equations, based on a linear mixing procedure for the 
self‐consistent  potential  or  on  a  Broyden  type.  Several  sections  of  the  developed  numeric  code  were 
parallelized, which reduces drastically the computing time. The development of these algorithms allows the 
computing of transport characteristics of  inhomogeneous structures. We  intend to study geometrical and 
dopant/charge  carrier  concentration  inhomogeneities  in order  to determine which  configuration  can be 
considered the closest to an optically active medium. 

 

Results obtained in the 2013 stage of the project 

In  2013  we  have  performed  intensive  simulations  of  electron  transmission  in  inhomogeneous  and 
disordered  nanostructures  based  on  the  R matrix method. We  have  used  the  computation  algorithms 
developed in the last part of 2012 and optimized them.  

The objective of  the 2013  stage was  to establish an analogy with  light propagation  in active disordered 
media.  Such  an  analogy was  not  studied  up  to  now.  For  light,  it was  determined  that  the  localization 
threshold  in  disordered  structures  depends  on  the  homogeneous  or  inhomogeneous  character  of  the 
distribution  of  scattering  centers  [17].  The  spatial  confinement  of  light  favors  the  localization  of 



electromagnetic waves with  certain wavelengths due  to  the dependence of  the  induced  interference  in 
structures with low dimensionality on the light wavelength [18]. In addition, if the optical medium is active, 
i.e.  absorber or  amplifier,  the  localization  threshold of  light depends  also on  the  absorption  coefficient, 
which  prevents  photon  localization  since  it  impedes  the  interference  of  scattered  light,  or  on  the  gain 
coefficient, which favors the localization by enhancing light amplification [17,18]. 

These considerations put the light‐electron analogies in disordered media in a new perspective. In optically 
active media, the intensity of light increases or decreases with the propagation distance, depending on the 
absorber or amplifier character of the medium. On the other hand, for electrons the current  (considered 
usually similar to the optical intensity) is constant throughout the conductor. Thus, a spatial inhomogeneity 
for  electron  propagation  can  only  be  a  conductor  in  which  the  concentration  of  free  electrons,  the 
transverse dimension of the conductor or the concentration of the scattering centers vary in space.  

To define  the configuration of an  inhomogeneous nanostructure analogous  to an active optical medium, 
which is the objective of the activity 1.1, we took into account also practical considerations. The case when 
the transverse dimension of the conductor is not constant has no practical utility, so that this situation was 
not investigated. On the other hand, a spatially varying electron concentration leads to the appearance of 
an  internal electric  field, with no equivalent  in optics, except media  in which  the  refractive  index varies 
spatially; such media, especially when disordered, are difficult to fabricate. Therefore, we have considered 
that a spatially varying scattering of electrons  is more  likely  to correspond  to a disordered optical active 
medium, and have chosen  this case  for numerical  investigations.  In addition,  this  situation  is  relevant  in 
practical  applications  since  the  disorder/distribution  of  scattering  centers  can  vary  gradually  in  the 
fabrication process of nanostructures. 

The  first  simulations  of  this  configuration  of  interest  focused  on  a  homogeneous  bidimensional 
nanostructure, with  a disordered distribution of  the  scattering  centers  (impurities). The  study of  such  a 
structure  corresponds  to  the  activity  1.2.  We  have  computed  the  charge  transport,  in  particular  the 
transmission, in these nanostructures with either attractive or repulsive impurities modeled as distributed 
Gaussian potentials  
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where   are the centers of a quadratic grid and   are chosen arbitrarily  in the scattering region, as a 
function of an order parameter. The scattering potential   is –1 eV for attractive impurities and 1 eV for 
repulsive ones and the standard deviation σ = 1 nm was considered the same for all scattering centers. The 
order parameter η defines  the  shift of  the  scattering  centers with  respect  to  the 10×10 quadratic  grid: 

 cu 

αr αR
0V

RRR δαα += 0 yxR ˆ)1(ˆ)1( 21 rLrL ηηδ −+−= , where L = 80 nm is the side of the scattering center and 

 are  random numbers between 0 and 1. For η = 1  the system  is ordered, whileη = 0 corresponds  to 
complete  disorder. We  have  assumed  a  quadratic  scattering  region  surrounded  by  ideal  contacts,  the 
electron effective mass being chosen as that in GaAs: 

2,1r

0065.0 mm = . 

The  parameter  of  interest  is  the  total  electron  transmission  between  source  and  drain  contacts,  , 
calculated as a sum over all open channels (the normalized conductance value); as such, this parameter can 
be larger than unity. The total transmission was represented in the figures below after averaging over 100 
ensembles with distinct disorder.  
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Figure 27  illustrates  the  transmission  for attractive  scattering centers  for η = 1.000, 0.994, 0.990, 0.986, 
0.980, 0.970, 0.960, 0.940, 0.900, and 0.000, the respective curves varying from top to bottom in region A. 
In the inset of Fig. 27 we have represented the transmission for high values of the order parameter: 1.000, 
0.998, 0.996, 0.994, 0.992, 0.990. It can be seen that the sharp maxima of transmission tend to flatten as 
the order decreases, while the forbidden region, located between 0.06 and 0.1 eV for a completely ordered 
system, disappears as η decreases to values of 0.97‐0.98. This forbidden region is caused by a superlattice 
effect. This region  in the case of attractive  impurities  is evidenced also by the plateau  in the  integral over 



the transmission coefficient, represented in Fig. 28. This figure suggests the existence of a phase transition 
for η in the range [0.97,0.98]. 

   

Fig. 27                                                                                          Fig. 28 

The energy dependence of  the  source‐drain  transmission  for  repulsive  scattering centers  is  illustrated  in 
Fig. 29. The curves decrease in amplitude for η values of 1.000, 0.990, 0.985, 0.980, 0.970, 0.000, 0.920. As 
in the case of attractive impurities, the maxima flatten as the disorder increases, and the threshold energy 
value  at  which  the  transmission  is  significant  decreases  as  η  takes  smaller  values.  This  effect  can  be 
explained by a decrease of the backscattering efficiency of the ordered array of repulsive impurities. 

   

Fig. 29            Fig. 30 

The  significant  difference  between  the  effects  of  the  attractive  and  repulsive  scattering  centers  is 
evidenced also by the energy dependence of the integrated total transmission, represented in Fig. 30 with 
black and, respectively, red lines. From this figure it can be seen that the integrated transmission decreases 
sharply at a certain η value for repulsive impurities, and increases rapidly for the attractive ones. The cause 
of this phenomenon is under investigation. The numerical simulations show that the value and the energy 
dependence  of  the  transmission  coefficient  can  be  modified  by  the  presence  (intentional  or  not)  of 
impurities of a certain type: attractive or repulsive. These results have been presented at an  international 
conference [C6].  

It should be emphasized that the transmission  in disordered conductors has a far more complex behavior 
than light scattering, since there are two types of scattering centers in this case (attractive or repulsive) and 
the  transport of  charge  carriers  is different  in  these  cases.  The  two  types of  impurities have no optical 
analog. Moreover, the two types of active media  in optics  (absorber or amplifier) cannot be put  in direct 
correspondence with the attractive or repulsive impurities in the case of electrons since in the last case not 
only the amplitude of the wavefunction changes, but also the interaction. 

A study of the influence of the two types of scattering centers on electron transmission in inhomogeneous 
and strongly confined nanostructures  is presented  in Fig. 31 and,  respectively, Fig. 32.  the bidimensional 



structure has a width W = 40 nm and a length L = 160 nm, the N = 100 impurities being placed in an ordered 
manner (in the nodes of a grid with equal distance along the transverse y direction and not equal distances 
along the longitudinal x direction) but distributed spatially according to a polynomial law. More exactly, the 
impurity concentration was chosen to vary as  
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In Fig. 31 and 32 we have presented  the  total source‐drain  transmission  for m = 1, 1.5, 2, 2.5 and 3, the 
black  line  indicating  the  transmission  value  in  the  absence  of  scattering  centers.  The  value  m  =  1 
corresponds  to a homogeneous and ordered distribution. Surprisingly, at  least at  first glance,  is  that  the 
transmission  behaves  similarly  for  attractive  and  repulsive  impurities.  The  step‐like  variation  of 
transmission  for  both  attractive  and  repulsive  scattering  centers  follows  the  transmission  of  an  ideal 
conductor (with no  impurities), the energy thresholds being  in agreement with the results  in Figs. 27 and 
29.  In addition,  it can be  seen  that  the  inhomogeneous distribution of  impurities has a  similar effect on 
transmission as the disorder in an array of homogeneously distributed scattering centers. In particular, the 
step‐like  transmission  shape  is  no  longer  evident  as  the  inhomogeneity  increases  and  the  transmission 
value decreases, the decrease being more visible for attractive scattering centers.  

      

Fig. 31                                                                                         Fig. 32 

     

Fig. 33                                                                               Fig. 34 

The simulation results  in Figs. 31 and 32 have not revealed significant differences between the effects of 
attractive and repulsive scattering centers because the spatial confinement was too strong. Therefore, we 
have studied a wider bidimensional conductor with W = L = 80 nm,  in which we have distributed the N = 
100  impurities  in  an  ordered manner  according  to  the  polynomial  law  (22).  The  results  for  attractive 
scattering centers are presented in Fig. 33, a detail of this figure being shown in Fig. 34. 



A comparison with Fig. 27  leads to the following conclusions (i) for m small (moderately  inhomogeneous) 
the  transmission  coefficient  behaves  similarly  to  the  case  of  a  homogeneous  distribution  of  ordered 
impurities, (ii) as the parameter m increases (the inhomogeneity increases) the forbidden region, in which 
the transmission coefficient   vanishes shift toward smaller energies and the value of   decreases (in 
the disordered system the forbidden region is not shifted), (iii) the oscillatory behavior of the transmission 
coefficient is apparent for all m values, being caused by the interference of the wavefunction in the ordered 
array of scattering centers. On the other hand, the global behavior of the transmission is similar to the case 
of  a  disordered  homogeneous  system.  In  all  situations,  the  value  of    is much  smaller  than  in  a 
nanoscale conductor with no scattering centers (see the black line in Fig. 33). 
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The energy dependence of  the  transmission coefficient  for  repulsive  impurities positioned  in an ordered 
but  inhomogeneous manner  is  illustrated  in Fig. 35, while a detail of this figure  is shown in Fig. 36. In this 
case the value of   is higher than for attractive impurities, in agreement with the simulation results for 
the disordered case. Again,  the general behavior  for m small  is similar  to  the case of  the disordered and 
homogeneous distribution of  repulsive  scattering centers,  significant values of  transmission appearing at 
higher  energies  as  m  increases.  The  last  observation  does  not  agree  with  the    behavior  in 
homogeneous  conductors.  In  addition,  the  energy dependence of  the  transmission  coefficient  is  almost 
identical for m > 2, except for the oscillations in   (due to the interferences of the wavefunction in the 
ordered structure), which tend to become irregular. 
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Fig. 35                                                                       Fig. 36 

So, unlike for attractive scattering centers, the non‐homogeneity of repulsive impurities has a much smaller 
influence on electron transport. This result has a practical importance, since it implies that the fabrication 
tolerances of nanometer‐scale device can be relaxed  if repulsive  impurities are  introduced. The numerical 
simulations obtained in 203 were published in an ISI journal [P7]. 

 

Results obtained in the 2014 stage of the project 

The 2014 stage of the project focused on the fabrication of inhomogeneous nanowires, in which the density 
of carriers/scattering centers is variable and controlled, and on the morphological characterization of these 
structures. This activity was  time‐consuming such  that,  in order  to  find  the optimum conditions  in which 
the  inhomogeneity  of  charge  carriers  has  observable  effects,  we  continued  to  perform  numerical 
simulations  for nanowires with variable concentrations of charge carriers along the  longitudinal direction 
(along  the  wire  axis).  In  the  following  we  detail  the  results  obtained  in  optimizing  the  profile  of  the 
inhomogeneous distribution of scattering centers as well as in fabricating the nanowires.  

Optimization of the effect of inhomogeneous distribution of scattering centers on ballistic transport  

An  inhomogeneous  distribution  of  scattering  centers  can  enhance  the  thermal  and/or  transport 
characteristics  of  some  devices.  For  example,  the  Seebeck  coefficient  and  the  electrical  conductivity  in 
polycrystalline materials can simultaneously increase [19], or the luminosity of polymeric LED can increase 



[20].  The modeling  of  such  a  distribution  of  scattering  centers  has  been  done  up  to  now  for  diffusive 
transport  only  [21‐23],  quantum  effects  being  considered  only  in  nanosystems  with  a  spatially 
inhomogeneous cross‐section [24].  

In order  to study  the effect of  inhomogeneous scattering centers on charge  transport, we calculated  the 
transmission  coefficient  of  ballistic  carriers  using  the  R  matrix  formalism  [16],  presented  above.  In 
particular, we simulated an ordered distribution of scattering centers/impurities,  in which the gradient of 
the  scattering  center  concentration  is  finite.  Thus,  we  could  focus  exclusively  on  the  effect  of 
inhomogeneity of impurities on the transmission coefficient. In the geometry of the problem, shown in Fig. 
37, the scattering centers (represented by points) are modeled by Gaussian potentials, in which the spatial 
distribution along the transverse y direction is homogeneous but along the longitudinal x direction varies as 

, where n labels the impurity column along x.   pnx ∝

Fig. 37 
The charge carriers  incident  from  the  left contact  (source)  interact with  scattering centers  in  the central 
region  and  are  collected  by  the  right  contact  (drain),  the  interaction  being  described  by  the 
time‐independent  Schrödinger  equation,  in  which  the  one‐particle  Hamiltonian  in  the  effective  mass 
approximation is 

)(
2

2
rW

m
H +Δ−=

h
,                ∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= α

α

σ 2

2
0

2
)(exp)( rrr VW                                                                          (23) 

where m  is the effective mass of carriers,  ),( yx=r   is the position vector,   denotes the position of the 
impurity center with Gaussian potential and standard deviation σ. We modeled the effect of both attractive 
and repulsive impurities by choosing V0 = −1 eV and, respectively, 1 eV, in both cases having σ = 1 nm.  

αr

As an example, we studied a bidimensional electron gas  in GaAs  in which m = 0.0655 m0,  the scattering 
region, with length of 160 nm and width of 80 nm, containing 20 × 10 scattering centers. Considering ideal 
contacts, we simulated scattering on attractive and repulsive  impurities with p = 1, 1.05, 1.1 and 1.5. The 
first case corresponds to a periodic arrangement of impurities.    

       

Fig. 38                      (a)                                                                (b)                                                                  (c)              

In Figs. 38(a)‐(c) we represented the energy dependence of the source‐drain transmission coefficient T for p 
= 1, 1.1 and, respectively, p = 1.5, for attractive impurities and for an increasing number of channels. For p = 
1 (Fig. 38(a)) a succession of allowed and forbidden energy bands form as a result of the superlattice effect 
in periodic structures. However, remnants of energy bands can still be observed, at  low energy, up to p = 
1.1. The maxima of the transmission coefficient are wide in the allowed bands and have a triangular shape 
because  the  electrons  in  different  channels/with  different  energies  E  feel  a  different  potential  energy 
distribution, the widths and heights of the periodic Gaussian potential wells depending on E. Between 0.04 
eV and 0.9 eV a forbidden energy band appears, in which T = 0. As the inhomogeneity (p value) increases, 



the  potential  profile  is  no  longer  periodic  and  the maxima  decrease  in  amplitude  until,  in  sufficiently 
inhomogeneous structures, the transmission coefficient varies almost linearly with energy, as in the case of 
disordered systems [C6]. For attractive impurities the transmission range up to 0.04 eV vanishes for p = 1.5. 

       

Fig. 39                         (a)                                                              (b)                                                                   (c)    

Besides modifying the energy dependence of the transmission coefficient, the inhomogeneous distribution 
of attractive scattering centers  leads to mode mixing  in the scattering region, especially at high energies. 
Extensive simulations (see publication [P7]) showed that the probability distribution of carriers for a given 
channel  depends  non‐uniformly  on  p:  in  general,  for  lower‐order  channels  the  electron  wavefunction 
modulus maintains  its form but decreases as p  increases, while for higher‐order channels both the shape 
and the probability distribution value changes with p, with no clear trend. For example, in Figs. 39(a)‐(c) we 
have  represented  the  variation with  p  (p  =  1,  1.1  and,  respectively,  1.5)  of  the wavefunction modulus 
throughout the whole structure (contacts and scattering region) for the 9th channel at E = 0.178 eV, energy 
for which T  is minimum. Besides emphasizing  the electron  redistribution among  the open  channels,  this 
figure  shows  the  tendency  of  increasing  as  p  increases  of  the  probability  at  the  outer  edges  of  the 
scattering region, which suggests structures sensitive to surface effects, and  thus appropriate  for sensing 
applications.  

      

Fig. 40                      (a)                                                                  (b)                                                                  (c)                  

A similar treatment of repulsive impurities show the same tendency of decreasing of transmission maxima 
as p increases and an almost linear dependence of T on energy for p = 1.5 (see Figs. 40(a)‐(c) in which the 
energy dependence of T is represented for p = 1, 1.1 and, respectively, p = 1.5, for an increasing number of 
channels).  Although  for  p  =  1 we  observe  the  same wide  and  triangular maxima,  due  to  the  structure 
periodicity, which disappear gradually  for an  increase  in  inhomogeneity of  the  impurity distribution,  the 
maxima seem to be more robust than  for attractive impurities, and can be observed at small energy even 
for p = 1.5.  The  transmission  threshold,  located  at 0.02 eV  for p = 1  and  caused by  the  formation of  a 
bandgap at lower energies, shifts to higher energies as p increases.  

Again, different modes become mixed, the electrons being redistributed among the open channels, without 
identifying  a  particular  behavior  of  the  probability  distribution  and  T  with  p.  Simulations  of  the 
wavefunction modulus show  that,  in general,  the  transmission of  lower‐order channels  increases with p, 
but the transmission value and the shape of the probability distribution for higher‐order channels are less 
influenced by the p value than for attractive  impurities. Unlike for scattering on attractive centers,  in this 
case the wavefunction modulus is concentrated in the central region for certain channels, for example for 
the  9th  channel  at  E  =  0.134  eV  (for  which  the  total  transmission  is minimum).  The  behavior  of  the 
wavefunction  in  this  case,  represented  in  Figs. 41(a)‐(c)  for p  =  1, 1.1  and,  respectively, 1.5,  suggests  a 
decrease of sensitivity at surface effects  



       

Fig. 41                  (a)                                                                 (b)                                                                   (c)                  

The results of these simulations were published  in the paper [P7] and were presented at an  international 
conference [C7].  

Fabrication of nanowires with inhomogeneous distribution of scattering centers  

The numerical simulations above show that an  inhomogeneous distribution of scattering centers, even an 
ordered one, affects the ballistic transport  in a similar manner to a random distribution of  impurities, this 
fact being observable even for propagation distances of only tens of nm. As such, the benefits of doping for 
electronic devices based on nanowires could be most clearly emphasized in segmented nanowires. To fulfill 
the objectives of this stage of the project, arrays of Ni nanowires (uniform at first, to calibrate the growth 
method, and segmented afterwards, of the type Ni/Cu) were grown electrochemically in the nanopores of 
an alumina template.  

Nanostructured systems based on Ni and on  its alloys are  important for sensing applications due to their 
magnetic and catalytic properties, which are strongly dependent on composition, dimensions, shape and 
morphology of nanowires.  The matrices of uniform or  segmented Ni wires,  including Ni/Cu wires, were 
produced  by  a  template  method.  This  method  is  commonly  used  to  fabricate  wires  with  controlled 
diameters  [25‐28]. The  template was alumina,  in which a matrix of nanopores was created by controlled 
anodization.  

Fabrication of the alumina template  

The template  is fabricated on a substrate, which  is a Si(111)/SiO2 wafer  (the width of the SiO2  layer  is 30 
nm),  cleaned  by  ultrasonication  in  a  bath  of  organic  solvents  (benzene  and  acetone).  The wafer  is  first 
covered with an Au film of 200 nm, deposited by DC cathodic pulverization. The Au film has the role of:  

a) anodization barrier for the subsequent deposition of the Al film;  

b)  working  electrode  in  the  electrochemical  anodization  process,  and  during  the  subsequent 
electrochemical deposition of nanowires.  

The third layer is Al (350 nm thick), also deposited by DC cathodic pulverization. The anodization of the Al 
film was performed in a home‐made electrochemical cell for an optimum control of the temperature of the 
electrolytic  bath.  A  three‐electrode  working  configuration  was  used  (consisting  of  the  two  working 
electrodes  and  a  commercial  reference  electrode  from  saturated  calomel  –  SCE).  The  anodization 
temperature must be kept around 3‐5oC, to avoid nanopore closure. The anodization electrolyte consists of 
a mixture of oxalic and phosphoric acids, the complete chemical reaction being:  

2Al + 3H2O →Al2O3 + 3H2                                                                                                                                             (24)  

The alumina membrane shows a high density of nanopores, with a typical morphology as that  in the SEM 
image in Fig. 42.  

The chrono‐ampermetric curve recorded during  the anodization process and presented  in Fig. 43 reveals 
the three stages of the anodization process:  

1)  the  formation  of  a  thin  Al2O3  layer  at  the  cathode  surface  (Al  film),  associated  to  the  initial  sharp 
decrease of the current;  

2) the equilibrium between the two competing processes: dissolution of the formed oxide in the region of 
intense electric field and continuation of the oxidation process, the competition between these processes 
leading to nanopore formation;  



3) nanopore growth up to the Au electrode, which  inhibits oxidation, and  leads to a sharp  increase of the 
current due to the electrolyte short‐circuit. 

                

Fig. 42                                                                          Fig. 43 

  

Fabrication of the matrix of Ni nanowires 

The Ni nanowires were grown in the pores of the alumina membrane by an electrochemical procedure. The 
electrochemical  deposition  has  the  advantages  of  low  cost  and  possibility  of  achieving  with  not  very 
sophisticated  equipmets.  Combined with  the  template method,  the  electrochemical  deposition  is  very 
versatile, and can be used to grow wires from either metal or semiconductor materials. Homogeneous or 
segmented wires  can  be  obtained  by  controlling  specific  growth  parameters  [29‐31].  The Ni  nanowires 
were  obtained  using  as  electrolyte  a  Watts  bath  containing  225  g/L  of  O6HNiSO 24 ⋅   and  30  g/L  of 

O6HNiCl 22 ⋅ . A VoltaLab potentiostat was used  to control  the electrochemical process via a computer,  in 
the  three‐electrode  configuration with an Au cathode, a platinum anode and a SCE  reference electrode. 
The temperature was kept at 5oC during the growth of Ni wires. Under these conditions the reaction at the 
cathode is:  

Ni2+ + 2e‐ →Ni0                                                                                                                                                              (25)   

A typical chrono‐ampermetric curve recorded during the growth of wires  inside the pores  is shown  in Fig. 
44.  

 Fig. 44 

After the pores are filled, the template membrane is dissolved in an alkaline solution of NaOH, so that the 
matrix of Ni wires remains exposed. Figures 45(a)‐(c) present SEM images, with increasing magnification, of 
the nanowire matrix grown on a set of Au interdigitated electrodes. As can be observed from these figures, 
the nanowires grow only on the metallic surfaces/interdigitated electrodes. 



                    

Fig. 45                 (a)                                                         (b)                                                                  (c) 

This type of electrodes was then used as chemical sensor of glucose, with capacitive detection. The lock‐in 
detection  system  is  represented  schematically  in  Fig.  46.  This  type  of  sensor  has  the  advantage  of  an 
enhanced sensitivity due to the large surface/volume ratio. 

   Fig. 46 

The  capacitive  response was measured  by  impedance  spectroscopy,  the  capacitance  being  determined 
according to:  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

+

−−
=

X
Y

XV
Y

YXfR

YXV
C

g

g arctanarctansin
2

)(
22

22

π
                                                           (26) 

   

Fig.47                                      (a)                                                                                        (b)                                       

where X and Y are  the  real and  imaginary parts of  the output signal, measured experimentally, Vg  is  the 
input signal, and f  is the frequency of the  input signal. The frequency response of the capacitive detector 
based on Ni nanowires, for different glucose concentrations of test solutions is presented below as follows: 



Fig. 47(a) illustrates the real and imaginary parts of the output signal, and Fig. 47(b) shows the capacitance 
determined from (26), the concentrations of the test solutions being indicated in the legend.  

Fig. 48 

The calibration curves of the detector in the range of concentrations studied, at different frequencies, are 
presented  in  Fig.  48. Due  to  the  large  surface/volume  ratio  and  the  high  catalytic  activity  of Ni  in  the 
glucose oxidation process, the capacitive sensors based on a matrix of Ni nanowires can thus sense glucose 
successfully.  

The  application  of  the  Ni  nanowire matrix  as  glucose  sensor  has  been  presented  at  an  international 
conference [C8].  

Fabrication of segmented Cu/Ni nanowires  

This system  is  interesting  in detecting magnetic  fields via  the magnetoresistive effect. To  fabricate  these 
nanowires we used the technique of sequential deposition from a single electrolytic Watts bath, containing 
a solution of  O6HNiSO 24 ⋅  (225 g/l),  O6HNiCl 22 ⋅  (30 g/l), boric acid (22,5 g/l) and hydrated copper sulphate 
(4  g/l).  The  same  working  configuration  as  above  was  used,  with  three  electrodes.  Two 
polarization/voltametric  curves  recorded  successively  during  the  growth  of  Ni/Cu  segmented wires  are 
shown in Fig. 49.  

                  

Fig. 49                                                                                   Fig. 50 

The  relatively  flat  region  in  the  range  (‐200 mV,  ‐850 mV)  corresponds  to  the growth of  the  compound 
Cu/Ni, while  the  region  (‐850 mV,  ‐1200 mV)  corresponds  to  the deposition of a compound  significantly 
richer in Ni (the element with the highest concentration in electrolyte).  

The sequential deposition is achieved by controlling the electrode potential in pulses that vary between the 
values favoring the deposition of one or the other metals (Ni or Cu). Figure 50 presents the programmed 
sequence  of  the  pulses  of  the  electrode  potential  (up)  and  of  the  deposition  current/recorded 



chrono‐ampermetric  curve  (bottom).  The  sequence  of  pulses  is  0.5  s  at  ‐1100 mV  (potential  value  that 
favors the deposition of the metal with the highest concentration in electrolyte,  i.e. Ni) and 6.0 s at  ‐120 
mV (potential value that favors the deposition of Cu).  

10 20 30 40 50 60

0

50

100

150

200

250

300

N
i (

20
0)

C
u 

(2
00

)N
i (

11
1) -1100 mV

 

 

C
u 

(1
11

)

I (
a.

u.
)

2θ (deg.)

Au (111)

 

10 20 30 40 50 60
0

50

100

150

200

250

N
i (

20
0)

C
u 

(2
00

)
N

i (
11

1)

 -1000 mV

 

 

Au (111)

I (
a.

u.
)

2θ (deg.)

C
u 

(1
11

)

 

Fig. 51                      (a)                                                                                                     (b) 

The  structure of  the wires  in  the obtained matrix was  characterized by X‐ray diffraction. The diffraction 
spectra  were  recorded  with  a  high‐resolution  diffractometer  (Bruker  D8  Discover),  using  the  Cu‐Kα1 
radiation (λ= 1.5406 Å)  in a grazing  incidence configuration,  to enhance  the optical path of X  rays  in  the 
sample.  The  obtained  X‐ray  spectra  for  two  samples  with  pulse  bases  at  ‐1100  mV  and  ‐1000  mV, 
respectively, are illustrated in Figs. 51(a) and 51(b). These spectra confirm the increase of Ni content as the 
potentials  have  increasingly  negative  values.  The  (111)  peak  of  Au  is  due  to  the  working  electrode 
(substrate).  

 

Results obtained in the 2015 stage of the project 

The  2015  stage  of  the  project  was  focused  on  the  electrical  characterization  of  inhomogeneous  and 
segmented  nanowires,  similar  to  those  fabricated  in  2014  and  in  which  the  density  of  charge 
carriers/scattering  centers  vary  along  the  nanowire  axis,  as  well  as  on  the  investigation  of  possible 
applications  of  other  inhomogeneous  distributions  of  the  interaction/scattering  potential.  The  obtained 
results are detailed in the following. 

Electrical  characterization  of  nanowires  with  an  inhomogeneous,  segmented  distribution  of  charge 
carriers/ scattering centers 

The  numerical  simulations  obtained  in  the  2014  stage  of  the  project  showed  that  the  segmented 
nanowires, in which the charge carriers/scattering centers vary stepwise along the nanowire axis, have the 
greatest  potential  in  electronic  and  optoelectronic  applications.  In  this  respect,  in  2014  we  have 
electrochemically  grown  arrays of Ni/Cu  segmented nanowires  in  the pores of  an  alumina  template. As 
already mentioned  above,  these  nanowires  are  able  to  detect magnetic  fields  via  the magnetoresistive 
effect. 

The template growth method allows the versatile fabrication of nanowires with a controlled diameter [25‐
28]. We used alumina  for growing arrays of  segmented Ni/Cu nanowires,  the array of pores  in alumina 
being obtained by a controlled anodization process, as described above.  Inside  the pores  in  the alumina 
template, shown in the SEM image in Fig. 1, we have grown segmented nanowires via a relatively low‐cost 
electrochemical  procedure,  suitable  for  both  metallic  and  semiconductor  nanowires,  which  does  not 
require  sophisticated  equipment  [29‐31].  After  the  pores  are  filled,  the  template  can  be  removed  by 
dissolution in an alkaline solution. 

The segmented nanowires were sequentially grown from a single electrolytic Watts‐type bath, as detailed 
above,  the growth control being assured by a  stepwise variation of  the electrode potential between  the 
values  that  favor  the deposition of one or  the other metals  (Ni or Cu). Figures 52 and 53  represent SEM 
images  of  the  segmented  Ni/Cu  nanowires with  a  diameter  of  100  nm,  the  different  segments  of  the 



nanowires being evident in the last image. The X‐ray diffraction spectrum in Fig. 54 confirms the presence 
of both elements, Ni and Cu, in the nanowires. Diffraction peaks attributed to Au and Si are also observable 
in  the  X‐ray  spectrum,  the  presence  of  these  peaks  being  justified  by  the  fact  that  Au  is  the working 
electrode and Si is the substrate on which the nanowires are grown. 

  Fig. 52                              Fig. 53 

                             

 Fig. 54 

One of the issues that appeared during electrical measurements was the electric contact with the nanowire 
arrays. To enhance the quality of the contact, we deposited nanowires higher than the template,  in order 
to  form  large‐area metallic  regions  above  the  template.  Figures 55  and 56  show  the  formation of  such 
metallic clusters and, respectively, of a continuous metallic  layer above the nanowire array, which can be 
used as electric  contact. The  insets  in  these  figures are  schematic  side  representations of  the nanowire 
array grown  in the pores of the template, as well as of the clusters/continuous  layer above the template. 
The magenta (brown) segments correspond to Ni (Cu). 

As  expected,  the  electrical  characterization  of  the  array  of  segmented  nanowires  revealed  a  linear 
dependence  of  the  current  on  the  applied  voltage,  the Ni/Cu  interface  having  an  ohmic  behavior.  The 
electrical  resistance, determined  from  the  slope of  the current‐voltage dependence, has  small values, of 
few ohms, consistent with the conducting behavior of the nanowires. The value of the electrical resistance 
varies in the presence of an applied magnetic field, as can be seen from Fig. 57, this behavior suggesting the 
possibility of detecting small magnetic  fields,  lower  than 0.3 T, with  the array of Ni/Cu nanowires. These 
results have been presented at an  international conference  [C9]. The decrease of the resistance with the 
magnetic field, of about 1.4%,  is caused by the magnetoresistive effect, which was observed also  in other 
segmented nanostructures containing ferromagnetic and diamagnetic materials grown by electrochemnical 
deposition in the pores of a template [32, 33]. 



Fig. 55    Fig. 56 

 Fig. 57 

Ballistic scattering on wrinkled potentials 

We  considered  that  it  would  be  beneficial  for  the  project,  and,  generally,  for  the  advancement  of 
knowledge  in  the  field,  to attempt  the  study of analogies between  the propagation of  light and ballistic 
electrons  [1,  2]  in  a  wider  sense.  As  such,  we  investigated  ballistic  electron  propagation  through 
inhomogeneous  scattering  configurations  that  attracted  less  attention  recently,  in  particular  through 
wrinkled potential configurations. We have chosen this configuration based a recent article [34] dedicated 
to propagation of elastic waves  through a region with a wrinkled distribution of refractive  indices/elastic 
coefficients. The aim was  to determine  the way  in which controllable and wrinkled potentials affect  the 
transmission  of  ballistic  electrons  in  bidimensional  semiconductors.  In  the  configuration  that  we  have 
focused  on,  illustrated  in  Fig.  58,  the  potential  energy  as well  as  the  number,  period  and width  of  the 
wrinkles in the scattering region can be controlled via a wrinkled gate electrode. Such gate electrodes have 
been  already  used  in  some  field‐effect  transistors  [35],  or  graphene‐on‐MoS2  capacitors  [36],  but  no 
investigation  of  ballistic  propagation  (involving  phase  conservation  at  reflections/scattering)  in  such 
structures exists. Because  in  the  studied  configuration a  large number of parameters  can be  varied, we 
expect  an  enhanced  control  on  ballistic  electron  transmission,  our  study  investigating  also  potential 
applications of such structures. 

The electron transmission coefficient was calculated using the formalism of the R matrix. In our particular 
case, the scattering region contains a wrinkled scattering potential with a width of 1 nm, which is continued 
by straight scattering potentials of the same width at the right and left sides of the structure. The variable 
parameters are: the geometric amplitude of the wrinkle A, its period λ, and the value (positive or negative) 



of the scattering potential, denoted by V0.  In all simulations we considered only 5 wrinkles, the  length of 
the wrinkled potential being thus 5λ. 

       
                                                       Fig. 58                                                                                            Fig. 59 

The propagation of electrons is described by the time‐independent Schrödinger equation, in which the uni‐
particle Hamiltonian in the effective mass approximation is 
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where  r =  (x,y)  is  the position vector and  the effective mass  is m = 0.0655 m0  (as  in GaAs). The  studied 
configuration is that of a bidimensional electron gas (2DEG) with width W = 20 nm and length L = 120 nm, 
which  includes  also  straight  regions  of  the  scattering  potential.  The  amplitude  V0  of  the  electrostatic 
potential can be varied between –1 eV and 1 eV by modifying the gate potential. 

 

Fig. 60 

The  dependence  of  the  transmission  coefficient,  calculated  in  the  R‐matrix  formalism,  on  the  electron 
energy E and V0  is represented  in Fig. 59  for A = 0  (straight gate) and  in Fig. 60  for A = 3, 6, and 9  (top, 
middle and bottom rows, respectively) and λ = 16 nm, 18 nm and 20 nm (left, middle and right columns, 
respectively). In all cases, the white region  in the  lower right corner  indicates that electron propagation  is 
forbidden due to the transverse confinement, which  imposes a minimum value for the energy of the first 



allowed mode in the structure. This minimum energy value depends on V0 and vanishes for V0 < –0.12 eV, 
when  the  spatial  confinement effect  is  absent  (a negative potential energy  applied by  the  straight  gate 
electrode,  narrower  than  the  2DEG  region,  induces  an  increase  of  the  effective width  of  the  structure, 
whereas positive V0 values cause a decrease of the 2DEG effective width). 

Figures 59 and 60 indicate different behaviors of the straight and wrinkled scattering potential. In the first 
case,  the  transmission  increases uniformly with  the number of open channels, while  in  the  last case  the 
dependence of the transmission on E and V0 is more complex, and is also dependent on the sign of V0. 

The shape of the transmission coefficient for positive V0 values in Fig. 60 can be explained by the formation 
of minibands in the structure containing periodic potential barriers, the width and location of which shifts 
towards higher energies as the height of the potential barriers increases [37]. On the other hand, negative 
V0 values correspond  to a periodic  scattering  structure with potential wells  instead of barriers,  structure 
that  favors  interferences not only between quantum electron wavefunctions scattered by adjacent wells, 
but also inside single wells. The superposition of these interferences can generate the complex structure in 
Fig. 60. 

For a better understanding of the difference between the effects of periodic potential barriers and wells on 
the  scattering  wavefunction,  we  have  replaced  the  wrinkled  bidimensional  scattering  potential  with  a 
onedimensional  potential,  consisting  of  barriers/wells with  the  same  dimensions  and  heights  as  those 
encountered by electrons propagating at different y coordinates in Fig. 58. The equivalent onedimensional 
configuration is represented in Fig. 61(a), the solid (dotted) thick vertical lines representing the locations of 
scattering regions for electron trajectories (thin lines of the same type) with y = 0 (y different from 0); the 
solid gray line corresponds to the wrinkled potential. The widths of the onedimensional scattering regions 
for y different from 0 are larger than for y = 0, and their position is no longer equidistant in a period λ, as 
opposed to the situation when y = 0. 

 

Fig. 61 

Figures 61(b)‐(e) show the dependence of the transmission coefficient on E and V0 for trajectories along y = 
0, 0.33A, 0.66A and,  respectively, 0.85A. Because  in  the equivalent onedimensional problem  the straight 
continuation  to  the  left  and  right  of  the wrinkled  scattering  potential was  not  taken  into  account,  the 
region  in which  the  propagation  is  forbidden  due  to  the  transversal  confinement  has  the  same width, 
independent on V0. The width of  this white region  is  thus  the same as  in Fig. 60  for V0 = 0. From  figures 
61(b)‐(e) it can be observed that, although the transmission coefficient shows similar minibands for positive 
and negative V0 values, their shape becomes more dissimilar as y (and the width of the scattering regions) 
increases.  Indeed,  interferences  can  form  inside  sufficiently wide potential wells,  as  in  Fig. 61(e), which 
then can superimpose the wavefunction  interferences between adjacent wells. In this situation, while the 
transmission is hindered by wide barriers, in regions with positive V0, for negative values of this parameter 



the  constructive  interferences  in  wide  quantum  wells  generate  significant  transmission  inside  the 
minibands. 

This simple onedimensional model allows an understanding of the transmission coefficient behavior in the 
bidimensional scattering problem. More precisely, the transmission dependence on E and V0 in the last case 
(see Fig. 60) is similar to that in Fig. 61(f), obtained by adding the contributions of trajectories with different 
y values.  

The wrinkled scattering potential affects also the wavefunction  in the structure. Propagation examples of 
the  (not normalized) probability distributions  in  the wrinkled structure  for the  fundamental mode at two 
different electron energies are presented  in  figures 62 and 63  for V0 = –0.5 eV and,  respectively, 0.5 eV. 
These  figures show  the effect of  the straight  left and  right continuation of  the wrinkled potential on  the 
wavefunction: for the same energy, the wavefunction depends on the attractive (negative V0) or repulsive 
(positive V0) nature of the scattering potential since this is not applied on the entire width of the structure, 
but  only  on  its  central  part.  In  addition,  these  figures  illustrate  the  effect  on  the  wrinkled  scattering 
potential  on  the  phase  of  the  transmitted wavefunction.  For  example,  in  Fig.  62,  top,  the  constructive 
interferences/wavefunction maxima appear in the center of the structure before the wrinkled region, and 
are  replaced  by  destructive  interferences  after  scattering.  In  another  example,  in  Fig.  63,  top,  the 
transmitted wavefunction has a similar form as the incident one, but a different oscillation period along x. 

      
                                           Fig. 62                                                                                          Fig. 63 

Numerical  simulations  show  that,  for  a  given  form  of  the  scattering  potential/gate  electrode,  the 
transmission coefficient can be controlled by  the applied gate potential. Such a control  is not possible/is 
insignificant in straight scattering potentials with the same widths. 

The obtained  results emphasize  the analogies between  the propagation of ballistic electrons and  that of 
electromagnetic  waves.  If  the  formation  of minibands  is  well  known  for  light  propagation  in  periodic 
structures, and is encountered especially in the area of photonic crystal [38], the propagation of electrons 
through  periodic  potential  wells  is  analogous  to  light  propagation  in  anti‐resonant  reflection  optical 
waveguides  (ARROWs)  [39]. These structures are  less studied, at  least  from  the point of view of ballistic 
electrons‐electromagnetic radiation analogies. 

The  simulations  presented  above  generalize  these  analogies  and  can  contribute  to  the  identification  of 
possible applications of wrinkled 2DEG  scattering potentials. These  results have been published  in an  ISI 
journal [P8] and were presented at an international conference [C10]. 

 

Results obtained in the 2016 stage of the project 

The 2016 stage of the project was dedicated to the comparison between the experimental results obtained 
in 2014 and 2015, and the numerical simulations (activity 3.4). However, because the segmented nanowire 
arrays that were electrically characterized in 2015 showed promising results as magnetic field sensors, we 
have  extended  their  experimental  investigation  in  2016,  in  order  to  study  the  effect  of  the  nanowire 
structure  on  the magnetic  response,  especially  on  the magnetoresistance,  defined  as  ,  where 

 and 
0/ RRΔ

)0()( RBRR −=Δ )0(0 RR = , with B the applied magnetic field. 



          

Fig. 64                                                                                   Fig. 65 

As a  result, we have  fabricated new arrays of segmented Ni/Cu nanowires, using  the same procedure as 
described above, with different widths of the Ni+Cu period. More precisely, the fabricated nanowires had 
an average diameter of 90 nm and a  length of 700 nm, which contains either 5 or 10 Ni+Cu periods. SEM 
images of nanowire arrays grown up to the top of the template and, respectively, forming metallic clusters 
above  the  templates are represented  in Figs. 64 and 65. These clusters are used  for optimum contacting 
the nanowire arrays. 

Typical measurements of the transversal resistance (in a magnetic field normal to the nanowire direction) 
of  the  fabricated  segmented Ni/Cu nanowire arrays  containing 5 and,  respectively 10 Ni+Cu periods are 
shown in Fig. 66(a) and 66(b).  

The experimental results confirm the expected  increase of magnetoresistance with the magnetic field, as 
well as  the  fact  that  the magnetoresistance  is  larger  for nanowires with a  shorter distance between  the 
ferromagnetic Ni segments/shorter periods. The last result, present also in single Ni nanowires or in sparse 
nanowire arrays, can be explained by a stronger dipolar interaction between closer positioned Ni segments. 
For Ni segments with small aspect ratio, the coupling between them is dominantly antiferromagnetic, but it 
changes to mostly ferromagnetic for nanowires with Ni segments with a larger aspect ratio [40]. Regarding 
the easy magnetization axis, it changes its direction depending on the aspect ratio value, but no agreement 
on this effect exists yet [40, 41]. 

        
Fig. 66                                       (a)                                                                                             (b) 



On the other hand,  in dense arrays of segmented nanowires, as those obtained  in this project, significant 
interactions can develop between Ni segments on adjacent nanowires. Therefore the modeling/prediction 
of the magnetic response of such a nanowire array  is difficult, the experimental results varying from one 
array to the other, although obtained under similar conditions. 

Another controversial effect  is the magnetoresistance dependence on  temperature. As can be seen  from 
Figs.  66(a)‐(b),  the  room  temperature  (300  K) magnetoresistance  is  larger  than  that measured  at  lower 
temperatures, say 200 K. Although such a result is beneficial from the point of view of applications, it does 
not reflect a usual behavior. Therefore, we have extended the measurements on several nanowire arrays, 
but  the  results were  not  conclusive,  the magnetoresistance  of  some  nanowire  arrays  being  positive  or 
negative  depending  on  temperature.  An  example  of  such  a  nanowire  array  is  shown  in  Fig.  67,  the 
measurement data corresponding to temperatures varying from 100 K and 300 K, with a 50 K step, the lines 
with  lighter  colors  uniting  data  obtained  at  higher  temperatures.  Because  of  the  dependence  of  the 
interaction between Ni segments on the specific configuration of segments in an array, such a result is not 
surprising. 

Fig. 67 

An  extensive  bibliographical  research  identified  the  cause  of  magnetoresistance  increase  in  single  Ni 
nanowires and nanowire arrays [42, 43] with a temperature‐dependent change of the magnetic anisotropy 
direction due to the thermal stress originating  in different thermal expansion coefficients of Ni nanowires 
and the surrounding medium. These coefficients generally decrease with the diameter of the nanowires.  

Because,  as  emphasized  above,  the  magnetic  response  depends  on  many  parameters,  additional 
experimental investigations are required to establish the magnetic response of a certain nanowire array. In 
addition, the effects of temperature and stress on the contacts must be accounted for, since the nanowires 
are  not  contacted  individually  but  via  the  metallic  clusters  above  the  template.  Such  additional 
investigations are beyond the scope of the present project.  

The results regarding the application of segmented Ni/Cu nanowire arrays as magnetic field detectors were 
submitted for publication [P9] and were presented at several international conferences [C12, C14‐C17]. 

Regarding  the  agreement/disagreement  between  numerical  simulations  and  experimental  results,  we 
concluded that: 

‐ the numerical simulations based on the R matrix formalism were applied on semiconducting structures in 
the ballistic transport regime, in the presence of either attractive or repulsive impurities/scattering centers 

‐  the numerical  simulations  showed  that  an  inhomogeneous distribution of  impurities, even  an ordered 
one, has a similar effect on the charge transport as a random distribution of impurities. The net effect is to 
attenuate  the  relative  minima  and  maxima  of  the  transmission  coefficient  of  electrons  caused  by 
interferences  between  wavefunctions  reflected  by  different  interfaces,  and  to  favor  an  almost  linear 
dependence of the current on voltage, typical for a diffusive charge transport  



‐ from an experimental point of view, random and probably  inhomogeneous  impurity distributions  in the 
nanowires grown in the pores of the alumina template cannot be avoided. As such, it is expected that the 
charge  transport  is  diffusive,  even  in  semiconducting  nanowires.  Therefore,  the  fact  that  we  have 
investigated metallic  nanowires, with  a  short mean  free  path, which  does  not  accommodate  a  ballistic 
transport regime even at low temperatures, does not affect the comparison with numerical simulations  

‐  thus,  theoretical  investigations on an  inhomogeneous distribution of  impurities  shows  that  simulations 
based the R matrix formalism do not necessarily improve the modeling of the charge transport or magnetic 
response of segmented Ni/Cu nanowires arrays compared to a (semi)classical/phenomenological treatment  

‐ however, even a phenomenological treatment of the nanowire arrays fabricated during the project cannot 
provide  a  satisfactory modeling  of  the  system  without  additional  investigations  regarding  the  relation 
between  the structure/morphology of  the nanowire array and  its magnetic response. Such  investigations 
are  beyond  the  aim  of  this  project, which  focused  on  analogies  between  the  propagation  of  light  and 
(quasi)ballistic electrons. In addition, as already mentioned, experimental results on single nanowires or Ni 
and/or  segmented  arrays  do  not  agree,  an  understanding  of  the  magnetic  response  in  such  low‐
dimensional systems depending significantly on the configuration/interaction of Ni segments in the specific 
sample  

‐  in  summary,  after  investigating  the  application of Ni/Cu  segmented nanowire  arrays  as magnetic  field 
detectors,  we  consider  that  predictive  responses  can  only  be  obtained  in  sparse  arrays,  in  which  no 
significant interactions exist between Ni segments on adjacent nanowires. Only in this case we can limit the 
theoretical  study/modeling  with  some  success  of  the magnetic  response  of  the  system  to  that  of  an 
individual nanowire  

‐ on the other hand,  it must be emphasized that the R matrix formalism applied to ballistic systems with 
optical  analog  lead  to  interesting  theoretical  results  and  practical  applications  in  systems  in which  the 
distribution of scattering centers  is periodic. For  instance, a novel method was suggested  for modulating 
the electron transmission via positive or negative voltages applied on a wrinkled gate, narrower than the 
two‐dimensional electron gas  

‐ even for interfaces between homogeneous media, the light‐ballistic electrons analogy lead to unexpected 
applications. For example, we have shown during  this project  that ballistic electrons can be steered by a 
simple  interface between a material with an  isotropic effective mass tensor and another one with a tilted 
non‐isotropic effective mass tensor  

‐  the  last  two  theoretical predictions  could not be demonstrated experimentally during  the project,  the 
technology necessary for fabricating the devices suggested by numerical simulations being not available in 
the research center in which the project was implemented  

‐ in conclusion, we consider that the experimental results obtained during the project can be described by 
theoretical models  (even  phenomenological  in  some  cases)  and  can  be  simulated  with  the  developed 
algorithms  if  the  magnetic  interactions  between  the  ferromagnetic  Ni  segments  in  the  pores  of  the 
template are known. This knowledge  requires, however, additional  investigations,  far beyond  the aim of 
the present  project. On  the other hand, based  also on bibliographical  references, we  consider  that  the 
computing  algorithms  developed  during  this  project  can  simulate  the  charge  transport  in  systems with 
arbitrary,  including  inhomogeneous, distributions of  scattering centers, and  that  the  results predicted by 
the  theoretical  simulations  performed  during  this  project  can  and will  be  demonstrated  experimentally 
using advanced technologies 
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