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On the implementation of the project PN-111-P4-1D-PCE-2016-0122, entitled Nanostructures
for quantum and plasmonic computing in the period July — December 2017

In the 2017 stage of the project, we focused on the activities

Al.1: Development of a computing algorithm for the investigation of ballistic nanostructures
with arbitrary configurations, by extending the computing algorithm developed in the MDEO
research center in order to be used for ballistic nanostructures with non-uniform sections
and/or bends, and

Al.2: Development of a ballistic configuration for implementing quantum circuits using Y-
junction type qubits, by applying the algorithm developed in Al.1 to a Y-junction and finding
suitable configurations for implementing logic gates in ballistic nanostructures.

With respect to the last activity, we focused on implementing a quantum algorithm, more
precisely on implementing the Fourier transform. The obtained results are detailed in the
following.

Development of a computing algorithm for the investigation of ballistic nanostructures
with non-uniform sections and/or bends. Application to Y-junctions

The structure analyzed in the 2017 stage of the present project is a graphene nanoribbon, with
hydrogen passivated edges, forming a Y-junction with 3 terminals (see Fig. 1). The interest
for this structure is motivated by the fact that it can implement position qubits, an incident
wavefunction on terminal 1 being divided in two wavefunctions in terminals 2 and 3, such
that the outgoing wavefunction can be considered a quantum superposition of the

wavefunction in terminals 2 and 3: a|0)+b|1), with |a|*> +|b|*=1, where the quantum
logic states |0y and |1) correspond to electronic wavefunctions propagating in terminals 2

and, respectively, 3. Thus, the Y junction generates the input quantum states for many logic
gates and algorithms [1,2], the study of ballistic electron transmission through the structure in
Fig. 1 being essential for designing logic configurations based on graphene nanoribbons.
Although a Y junction could implement quantum logic states in other materials as well, in the
ballistic regime, for example in a two-dimensional electron gas (2DEG), we focus on
graphene since the mean free path (the average distance between two collisions) is longest in
this material [3].

In a symmetric structure, as that in Fig. 1, an electron beam incident from terminal 1 is
transmitted with equal probability toward terminals 2 and 3, which implies Ty, = T3, where
Tij, 1,J = 1,2,3 denotes the transmission coefficient of ballistic electrons incident from terminal
i and outgoing via terminal j. As such, the only quantum logic state that can be implemented
is (| O>+|1>)/\/§ , which limits the functionality of logic circuits. The aim of the present study
is to investigate the possibility of implementing logic states with a=b by applying a
transversal electric field along the y direction in the beam splitting region (see Fig. 1).
Previous experiments and simulations have shown that it is possible in this way to modify the
coefficients a and b in the case of a 2DEG satisfying the Schrédinger equation [4,5].
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In this project we have analyzed the ballistic transport in Y junctions from an atomistic
perspective, using the density functional theory (DFT). The transmission was calculated using
the NEGF (non-equilibrium Green’s function) formalism [6] implemented with the
TRANSIESTA module of the SIESTA software. In this formalism, the basis functions are
strictly localized, which allows the investigation of relatively large systems, of up to several
thousand atoms, and is more suited than continuum models to handle very thin nanoribbons,
in which the edge effects are important.

To study the transmission through the structure in Fig.1 we consider that terminal 1 is kept at
the potential V; = V, while terminals 2 and 3 are kept at V, = V3= 0. As a first example, we
analyzed the total transmission coefficients (as sums on all open channels) in the absence and
presence of the electric field Esieiq applied along the y direction, for V = 0. The results for Ty,
T13 and T3 are represented in Fig. 2(a) and, respectively, Fig. 2(b) as a function of the energy
E of incident ballistic electrons, the black line corresponding to the transmission of an ideal
straight graphene stripe of the same width. As expected, T1, = Ti3 in the absence of Ejelg,
terminals 2 and 3 being equivalent in this case (see Fig. 2(a)). On the other hand, by applying
Efietg, With a value of 5 V/nm in Fig. 2(b), T1, and T,3 differ, their values having a maximum
on either side of the Fermi level (situated at E = 0). From Fig. 2(b) it follows that T3 varies
also when a transversal electric field is applied, but this transmission coefficient is of no
interest in the subsequent studies, only the transmission coefficients T1, and T13 being relevant
for implementing quantum logic states.

To investigate the tenability of the difference between transmission coefficients/currents
measured between terminals 1 and 2 and, respectively 1 and 3, we represented in Fig. 3 the
two relevant transmission coefficients for different Eseg values in the 1-10 V/nm range, and
for V. = 0. It can be seen that, for small transversal fields T, and Ti3 are similar, being
identical for Esieig = 0, but as the transversal electric field increases T1, and T13 acquire an anti-
phase behavior around the Fermi level: the increase of one transmission at a certain energy E
is associated to the decrease of the other one and vice-versa.

By applying a finite voltage between terminals 1 and 2, respectively 1 and 3, for example V =
0.5 V, one can estimate the currents I, and I, measured at terminals 2 and 3 as a function of
the applied transversal field. The currents are determined using the Landauer-Biittiker



relation, starting from the transmission coefficients. Fig. 4 illustrates this dependence. The
two currents have a non-monotonous behavior, the difference between them vanishing at Egieq
= 6 V/nm, while a moderate field Eseg = 0.23 V/nm as well as large fields induce a significant
difference between the currents at the two terminals. This behavior is due to interferences in
the transversal plane of the wavefunctions in all 3 terminals of the device, possible in the
ballistic transport regime.
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The bias applied between terminals 1-2 and, respectively 1-3 can influence as well the
difference between currents I; and I,, as suggested by Figs. 5(a) and 5(b), corresponding to
transversal fields of 5 V/nm and, respectively, 10 V/nm. From these figures it follows that the
ratio I3/l is higher than 1 over the bias interval considered, but depends on Eseq, being larger
for higher transversal fields, in agreement with Fig. 4. The unexpected result is that, even in
this case, the ratio 13/1, depends non-uniformly of the bias, reaching a maximum value for V =
0.6 V when Esielg = 10 V/nm. This behavior is caused by the potential modulation along x via
the applied bias, modulation that influences the interference of wavefunctions in all terminals.
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In conclusion, a transversal electric field can commute the current between the two
arms/branches of a Y junction; the arm with a larger current is determined by the direction of
the transversal electric field, the respective currents in terminals 2 and 3 switching their values
as the direction of the field is reversed. The ratio between the two currents is not monotonous
as a function of the transversal electric field or as a function of the applied voltage, optimum
values existing for maximizing this effect.

Another possibility of inducing a difference between the transmission coefficients/currents in
the outgoing terminals of a Y junction is to use asymmetric configurations, as those illustrated
in figures 6(a) and 6(b), referred to in the following as thin branch and thick branch
configurations, respectively.
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The dependence of the corresponding transmission coefficients on the energy of ballistic
electrons is represented in Fig. 7. From this figure it can be seen that in junctions with a
narrow branch Ty, is close to the ideal transmission, while Ty is significantly reduced. The
presence of minima in Ty, is caused by the resonant transport/wavefunction interferences in
the 3 terminals of the junction. These minima become wider as the coupling of the lateral
branch increases (the thick branch case), behavior associated with a decrease of Ti,.

It should be mentioned that, for some energies of the incoming electrons, Ti, or Ty3 vanish in
symmetric junctions subjected to transversal electric fields (see Fig. 3) as well as in
asymmetric junctions (see Fig. 7), which is a requirement for optimum behavior of NOT and
CNOT quantum logic gates [1]. The condition Ty, = 0 or T13 = 0 for a given energy E of the
incident electrons, tunable via a gate voltage, can be achieved in the first case by varying
Esiels, Which assumes the fabrication of additional electrodes in the junction plane, while in the
second case it implies a proper choice of geometry.
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The original results obtained by atomistic simulation of ballistic charge transport in graphene
through Y junctions are going to be finalized and submitted for publication (Al).

Development of configurations for the implementation of the discrete quantum Fourier
transform in ballistic nanostructures

In a previous paper [1] graphene configurations were shown to be able to implement several
logic gates, since this material has the longest mean free path, and thus allows the fabrication
of logic gates/circuits working in the ballistic (coherent/collisionless) regime. Logic circuits
of practical interest, however, implement algorithms, which are generally realized as
succession of logic gates. Such an approach assumes that the mean free path is longer than the
circuit’s dimension, requirement that limits the number of logic gates that can be successively
implemented.

In the project we have focused on implementing an algorithm, more specific the quantum
discrete Fourier transform (DFT), which is a component of other algorithms, such as the Shor
algorithm. The quantum DFT applied to an n-qubit state is defined as

F: Zox il n— Zyk|k>n (1)
J_

and can be obtained by a succession of Hadamard logic gates H, conditional rotation gates
represented by matrices

R <[ 0 2
"_(o exp(zai/zk)j —— @)

and SWAP gates represented by ¢ in the circuit in Fig. 8 [7].

Quantum circuits of Hadamard and conditional rotation types can be implemented with
graphene nanoribbons based on Y junctions, by a proper choice of the lengths of interference
regions Ly and Lg. The working principle of these gates is discussed in details in [1], and the
Y junction simulations presented above are essential for finding the optimum working
conditions of these gates.
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A circuit that realizes the quantum DFT involves thus coupling Hadamard and conditional
rotation gates, as in Fig. 8, the SWAP gates being dispensable if the output qubits are properly
defined. The resulting circuit is both complex and long, even for a small number of input
qubits, imposing constrains on the material and working temperature. Such a solution for DFT
implementation is not feasible. Therefore, we look for a direct implementation of the DFT of
a quantum electronic wavefunction, without decomposing it in logic gates. More precisely, we
propose a configuration that realizes the continuous Fourier transform of the wavefunction,
configuration that can be then discretized to implement the DFT in nanostructures.

The Fourier transform of a function y(x) is a particular case, for a =z /2, of the fractional
Fourier transform (FFT) of order «, defined as [8]
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The FFT implementation method for ballistic electrons put forward in this project relies on
the analogy between the classical electromagnetic field and the wavefunction of ballistic
electrons [9] and on the fact that the FFT in optics is achieved in a graded-index (GRIN)
waveguide, with a refractive index n(x) that varies quadratically in the transverse direction

[8,10]. As such, a FFT of tunable order can be realized in 2DEG or graphene subjected to a

gate voltage that induces a potential energy quadratically dependent on x: Ug (X) =Ug +7/x2,
where the second term can be considered a perturbation of the first one. In a 2DEG, the
wavefunction W(x, y) =w(x)exp(iky) of electrons with effective mass m that propagate with
a wavenumber k along direction y is a solution of the time-independent Schrodinger equation:
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The equation above is similar to the Helmholtz equation

0% 8%
——5+——5+k§n200 E(x,y)=0, ko=wl/c (5)
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satisfied by the electric field of an electromagnetic wave E(X,Yy)=E(x)exp(iky) with

frequency @, which propagates along y in a GRIN medium with n(x) =ng —mx? /2, where
the second term is much smaller than the first. Since the GRIN medium realizes a FFT of
order « of the incident field after a propagation distance L, = a+/n1/ng [8,10], the potential

induced by the gate electrode implements a FFT of order « after a propagation distance in
2DEG equal with

Lo = ay(E-Uo)/y (6)

In both cases, the trajectory of ballistic electrons/electromagnetic field is periodic, the position
x and the tangent to the trajectory @ in a plane y = const. evolving with respect to the
corresponding parameters in the plane y = 0 (indexed by 0) as:

(Xj _| cos(Ay) w [Xoj ™
0 — Asin(Ay) cos(Ay) &0
with A=./n;/ng inopticsand A=./(E—-Ug)/y forelectrons in a 2DEG.

If the quadratic potential is applied to a graphene stripe, in which the spinorial wavefunction
yl = (w1,w2) that propagates along y with a wavenumber k satisfies the equation

G
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where vig =c¢/300 is the Fermi velocity, it can be shown that each spinor component is a
solution of

{hzvé[—;—iJka]—[E—UG(X)]Z}//l,z =0, ©)

the FFT of order « being obtained after a propagation distance

Ly =aJ(E—-Ug)/ 2y (10)



This distance is +/2 times shorter than that required to obtain a similar effect in 2DEG, being
a manifestation of the Berry phase in this [11]. The trajectory of charge carriers is periodic in

this case also, described by equation (7) with A=./(E-Ug)/2y

A parabolic potential distribution can be realized with a nonplanar, convex or concave, gate
electrode, as in Fig. 10. Areas of convex or concave electrodes have been fabricated on
flexible substrates [12], while individual nonplanar electrodes with complex topographies at
nanometer scale were fabricated with lithographic techniques [13].

Because y > 0, the configuration in Fig. 10(a) realizes a FFT for negative potentials Ug, while
that in Fig. 10(b) achieves this for positive Ug, the latter configuration needing a shorter
length L for implementing a FFT with a given «a.
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Another, simpler technological solution is to fabricate a segmented gate electrode, consisting
of several metallic stripes of equal or different widths, as shown in Fig. 11(a) and,
respectively, 11(b); the distance between electrodes, d, is considered constant.
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In the first case the metallic electrodes of equal widths must be connected independently, the
gate potential applied on electrode n, with a center coordinate X, being chosen to induce a
potential U, =Ug (Xn) if d is small, or

X, +d
Un(xn+d) = [(Uo +x*)dx (11)

X,—d

if d cannot be neglected. In the second case, a parabolic potential can be implemented by a
segmented electrode in which all segments are connected to the same gate voltage that
induces a potential U if the width of electrode n, wy, is chosen such that

Xo+d
U(xn +d) = j(uo +x2)dx (12)

X,—d



where X, is the center of electrode n and satisfies the relation Xp.1 = Xp +d +(Wn +Wpy1)/2.

Equations (11) and (12) express the fact that the average potential is the same in a segmented
and a continuous electrode [14].

The parabolic potential Ug(x)=Ug +}/X2 can thus generate a FFT of order « after a
propagation length L, for the wavefunction of ballistic electrons in 2DEG or graphene. In
particular, the continuous Fourier transform is obtained after a propagation distance L,,» and

the DFT can be generated by discretizing both input and output wavefunctions, as suggested
in Fig. 12.
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The original results regarding the implementation of FFT of order « of an electronic
wavefunction in 2DEG or graphene are submitted for publication (A2).
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Papers to be finalized/submitted for publication in ISI journals in 2017

Al: G. Nemnes, T.L. Mitran, D. Dragoman — Ab initio investigations of ballistic graphene Y-
junctions in transversal electric field, to be finalized and submitted at J. Appl. Phys.

A2: D. Dragoman — Tunable fractional Fourier transform implementation of electronic
wavefunctions in atomically thin materials, submitted at Nanotechnology
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