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Scientific Report 

 

On the implementation of the project PN-III-P4-ID-PCE-2016-0122, entitled Nanostructures 

for quantum and plasmonic computing in the period July – December 2017 

 

In the 2017 stage of the project, we focused on the activities  

A1.1: Development of a computing algorithm for the investigation of ballistic nanostructures 

with arbitrary configurations, by extending the computing algorithm developed in the MDEO 

research center in order to be used for ballistic nanostructures with non-uniform sections 

and/or bends, and  

A1.2: Development of a ballistic configuration for implementing quantum circuits using Y-

junction type qubits, by applying the algorithm developed in A1.1 to a Y-junction and finding 

suitable configurations for implementing logic gates in ballistic nanostructures.  

With respect to the last activity, we focused on implementing a quantum algorithm, more 

precisely on implementing the Fourier transform. The obtained results are detailed in the 

following. 

Development of a computing algorithm for the investigation of ballistic nanostructures 

with non-uniform sections and/or bends. Application to Y-junctions 

The structure analyzed in the 2017 stage of the present project is a graphene nanoribbon, with 

hydrogen passivated edges, forming a Y-junction with 3 terminals (see Fig. 1). The interest 

for this structure is motivated by the fact that it can implement position qubits, an incident 

wavefunction on terminal 1 being divided in two wavefunctions in terminals 2 and 3, such 

that the outgoing wavefunction can be considered a quantum superposition of the 

wavefunction in terminals 2 and 3:  1|0| ba , with 1|||| 22  ba , where the quantum 

logic states 0|  and 1|  correspond to electronic wavefunctions propagating in terminals 2 

and, respectively, 3. Thus, the Y junction generates the input quantum states for many logic 

gates and algorithms [1,2], the study of ballistic electron transmission through the structure in 

Fig. 1 being essential for designing logic configurations based on graphene nanoribbons. 

Although a Y junction could implement quantum logic states in other materials as well, in the 

ballistic regime, for example in a two-dimensional electron gas (2DEG), we focus on 

graphene since the mean free path (the average distance between two collisions) is longest in 

this material [3]. 

In a symmetric structure, as that in Fig. 1, an electron beam incident from terminal 1 is 

transmitted with equal probability toward terminals 2 and 3, which implies T12 = T13, where 

Tij, i,j = 1,2,3 denotes the transmission coefficient of ballistic electrons incident from terminal 

i and outgoing via terminal j. As such, the only quantum logic state that can be implemented 

is 2/)1|0(|  , which limits the functionality of logic circuits. The aim of the present study 

is to investigate the possibility of implementing logic states with ba   by applying a 

transversal electric field along the y direction in the beam splitting region (see Fig. 1). 

Previous experiments and simulations have shown that it is possible in this way to modify the 

coefficients a and b in the case of a 2DEG satisfying the Schrödinger equation [4,5].  
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                       Fig. 1                                                                 Fig. 2 

In this project we have analyzed the ballistic transport in Y junctions from an atomistic 

perspective, using the density functional theory (DFT). The transmission was calculated using 

the NEGF (non-equilibrium Green’s function) formalism [6] implemented with the 

TRANSIESTA module of the SIESTA software. In this formalism, the basis functions are 

strictly localized, which allows the investigation of relatively large systems, of up to several 

thousand atoms, and is more suited than continuum models to handle very thin nanoribbons, 

in which the edge effects are important. 

To study the transmission through the structure in Fig.1 we consider that terminal 1 is kept at 

the potential V1 = V, while terminals 2 and 3 are kept at V2 = V3 = 0. As a first example, we 

analyzed the total transmission coefficients (as sums on all open channels) in the absence and 

presence of the electric field Efield applied along the y direction, for V = 0. The results for T12, 

T13 and T23 are represented in Fig. 2(a) and, respectively, Fig. 2(b) as a function of the energy 

E of incident ballistic electrons, the black line corresponding to the transmission of an ideal 

straight graphene stripe of the same width. As expected, T12 = T13 in the absence of Efield, 

terminals 2 and 3 being equivalent in this case (see Fig. 2(a)). On the other hand, by applying 

Efield, with a value of 5 V/nm in Fig. 2(b), T12 and T13 differ, their values having a maximum 

on either side of the Fermi level (situated at E = 0). From Fig. 2(b) it follows that T23 varies 

also when a transversal electric field is applied, but this transmission coefficient is of no 

interest in the subsequent studies, only the transmission coefficients T12 and T13 being relevant 

for implementing quantum logic states.   

To investigate the tenability of the difference between transmission coefficients/currents 

measured between terminals 1 and 2 and, respectively 1 and 3, we represented in Fig. 3 the 

two relevant transmission coefficients for different Efield values in the 1-10 V/nm range, and 

for V = 0. It can be seen that, for small transversal fields T12 and T13 are similar, being 

identical for Efield = 0, but as the transversal electric field increases T12 and T13 acquire an anti-

phase behavior around the Fermi level: the increase of one transmission at a certain energy E 

is associated to the decrease of the other one and vice-versa.  

By applying a finite voltage between terminals 1 and 2, respectively 1 and 3, for example V = 

0.5 V, one can estimate the currents I1 and I2 measured at terminals 2 and 3 as a function of 

the applied transversal field. The currents are determined using the Landauer-Büttiker 
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relation, starting from the transmission coefficients. Fig. 4 illustrates this dependence. The 

two currents have a non-monotonous behavior, the difference between them vanishing at Efield 

= 6 V/nm, while a moderate field Efield = 0.23 V/nm as well as large fields induce a significant 

difference between the currents at the two terminals. This behavior is due to interferences in 

the transversal plane of the wavefunctions in all 3 terminals of the device, possible in the 

ballistic transport regime. 

Fig. 3 

Fig. 4 

The bias applied between terminals 1-2 and, respectively 1-3 can influence as well the 

difference between currents I1 and I2, as suggested by Figs. 5(a) and 5(b), corresponding to 

transversal fields of 5 V/nm and, respectively, 10 V/nm. From these figures it follows that the 

ratio I3/I2 is higher than 1 over the bias interval considered, but depends on Efield, being larger 

for higher transversal fields, in agreement with Fig. 4. The unexpected result is that, even in 

this case, the ratio I3/I2 depends non-uniformly of the bias, reaching a maximum value for V = 

0.6 V when Efield = 10 V/nm. This behavior is caused by the potential modulation along x via 

the applied bias, modulation that influences the interference of wavefunctions in all terminals. 
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Fig. 5                              (a)                                                                     (b) 

In conclusion, a transversal electric field can commute the current between the two 

arms/branches of a Y junction; the arm with a larger current is determined by the direction of 

the transversal electric field, the respective currents in terminals 2 and 3 switching their values 

as the direction of the field is reversed. The ratio between the two currents is not monotonous 

as a function of the transversal electric field or as a function of the applied voltage, optimum 

values existing for maximizing this effect.  

Another possibility of inducing a difference between the transmission coefficients/currents in 

the outgoing terminals of a Y junction is to use asymmetric configurations, as those illustrated 

in figures 6(a) and 6(b), referred to in the following as thin branch and thick branch 

configurations, respectively.  

Fig. 6   (a)      (b) 

The dependence of the corresponding transmission coefficients on the energy of ballistic 

electrons is represented in Fig. 7. From this figure it can be seen that in junctions with a 

narrow branch T12 is close to the ideal transmission, while T13 is significantly reduced. The 

presence of minima in T12 is caused by the resonant transport/wavefunction interferences in 

the 3 terminals of the junction. These minima become wider as the coupling of the lateral 

branch increases (the thick branch case), behavior associated with a decrease of T12. 

It should be mentioned that, for some energies of the incoming electrons, T12 or T13 vanish in 

symmetric junctions subjected to transversal electric fields (see Fig. 3) as well as in 

asymmetric junctions (see Fig. 7), which is a requirement for optimum behavior of NOT and 

CNOT quantum logic gates [1]. The condition T12 = 0 or T13 = 0 for a given energy E of the 

incident electrons, tunable via a gate voltage, can be achieved in the first case by varying 

Efield, which assumes the fabrication of additional electrodes in the junction plane, while in the 

second case it implies a proper choice of geometry.  
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     Fig. 7 

The original results obtained by atomistic simulation of ballistic charge transport in graphene 

through Y junctions are going to be finalized and submitted for publication (A1). 

Development of configurations for the implementation of the discrete quantum Fourier 

transform in ballistic nanostructures  

In a previous paper [1] graphene configurations were shown to be able to implement several 

logic gates, since this material has the longest mean free path, and thus allows the fabrication 

of logic gates/circuits working in the ballistic (coherent/collisionless) regime. Logic circuits 

of practical interest, however, implement algorithms, which are generally realized as 

succession of logic gates. Such an approach assumes that the mean free path is longer than the 

circuit’s dimension, requirement that limits the number of logic gates that can be successively 

implemented.  

In the project we have focused on implementing an algorithm, more specific the quantum 

discrete Fourier transform (DFT), which is a component of other algorithms, such as the Shor 

algorithm. The quantum DFT applied to an n-qubit state is defined as  
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and SWAP gates represented by                       in the circuit in Fig. 8 [7]. 

Quantum circuits of Hadamard and conditional rotation types can be implemented with 

graphene nanoribbons based on Y junctions, by a proper choice of the lengths of interference 

regions LH and LR. The working principle of these gates is discussed in details in [1], and the 

Y junction simulations presented above are essential for finding the optimum working 

conditions of these gates.  
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A circuit that realizes the quantum DFT involves thus coupling Hadamard and conditional 

rotation gates, as in Fig. 8, the SWAP gates being dispensable if the output qubits are properly 

defined. The resulting circuit is both complex and long, even for a small number of input 

qubits, imposing constrains on the material and working temperature. Such a solution for DFT 

implementation is not feasible. Therefore, we look for a direct implementation of the DFT of 

a quantum electronic wavefunction, without decomposing it in logic gates. More precisely, we 

propose a configuration that realizes the continuous Fourier transform of the wavefunction, 

configuration that can be then discretized to implement the DFT in nanostructures. 

The Fourier transform of a function )(x  is a particular case, for 2/  , of the fractional 

Fourier transform (FFT) of order , defined as [8] 
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The FFT implementation method for ballistic electrons put forward in this project relies on 

the analogy between the classical electromagnetic field and the wavefunction of ballistic 

electrons [9] and on the fact that the FFT in optics is achieved in a graded-index (GRIN) 

waveguide, with a refractive index )(xn  that varies quadratically in the transverse direction 

[8,10]. As such, a FFT of tunable order can be realized in 2DEG or graphene subjected to a 

gate voltage that induces a potential energy quadratically dependent on x: 2
0)( xUxUG  , 

where the second term can be considered a perturbation of the first one. In a 2DEG, the 

wavefunction )exp()(),( ikyxyx   of electrons with effective mass m that propagate with 

a wavenumber k along direction y is a solution of the time-independent Schrödinger equation:  
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The equation above is similar to the Helmholtz equation 
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satisfied by the electric field of an electromagnetic wave )exp()(),( ikyxEyxE   with 

frequency , which propagates along y in a GRIN medium with 2/)( 2
10 xnnxn  , where 

the second term is much smaller than the first. Since the GRIN medium realizes a FFT of 

order  of the incident field after a propagation distance 01 / nnL   [8,10], the potential 

induced by the gate electrode implements a FFT of order  after a propagation distance in 

2DEG equal with  

 /)( 0UEL                                                                                                           (6) 

In both cases, the trajectory of ballistic electrons/electromagnetic field is periodic, the position 

x and the tangent to the trajectory  in a plane y = const. evolving with respect to the 

corresponding parameters in the plane y = 0 (indexed by 0) as: 
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with 01 / nnA   in optics and /)( 0UEA   for electrons in a 2DEG. 

If the quadratic potential is applied to a graphene stripe, in which the spinorial wavefunction 

),( 21 T  that propagates along y with a wavenumber k satisfies the equation 
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where 300/cvF   is the Fermi velocity, it can be shown that each spinor component is a 

solution of  
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the FFT of order  being obtained after a propagation distance 

 2/)( 0UEL                                                                                                         (10) 
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This distance is 2  times shorter than that required to obtain a similar effect in 2DEG, being 

a manifestation of the Berry phase in this [11]. The trajectory of charge carriers is periodic in 

this case also, described by equation (7) with 2/)( 0UEA   

A parabolic potential distribution can be realized with a nonplanar, convex or concave, gate 

electrode, as in Fig. 10. Areas of convex or concave electrodes have been fabricated on 

flexible substrates [12], while individual nonplanar electrodes with complex topographies at 

nanometer scale were fabricated with lithographic techniques [13]. 

Because  > 0, the configuration in Fig. 10(a) realizes a FFT for negative potentials UG, while 

that in Fig. 10(b) achieves this for positive UG, the latter configuration needing a shorter 

length L for implementing a FFT with a given . 
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Fig. 10                                           (a)                                                                       (b) 

Another, simpler technological solution is to fabricate a segmented gate electrode, consisting 

of several metallic stripes of equal or different widths, as shown in Fig. 11(a) and, 

respectively, 11(b); the distance between electrodes, d, is considered constant.  
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Fig. 11                                             (a)                                                                          (b) 

In the first case the metallic electrodes of equal widths must be connected independently, the 

gate potential applied on electrode n, with a center coordinate xn being chosen to induce a 

potential )( nGn xUU   if d is small, or  
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if d cannot be neglected. In the second case, a parabolic potential can be implemented by a 

segmented electrode in which all segments are connected to the same gate voltage that 

induces a potential U if the width of electrode n, wn, is chosen such that  
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where xn is the center of electrode n and satisfies the relation 2/)( 11   nnnn wwdxx . 

Equations (11) and (12) express the fact that the average potential is the same in a segmented 

and a continuous electrode [14]. 

The parabolic potential 2
0)( xUxUG   can thus generate a FFT of order  after a 

propagation length L  for the wavefunction of ballistic electrons in 2DEG or graphene. In 

particular, the continuous Fourier transform is obtained after a propagation distance 2/L  and 

the DFT can be generated by discretizing both input and output wavefunctions, as suggested 

in Fig. 12.  
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Fig. 12 

The original results regarding the implementation of FFT of order  of an electronic 

wavefunction in 2DEG or graphene are submitted for publication (A2). 
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Papers to be finalized/submitted for publication in ISI journals in 2017  

A1: G. Nemneş, T.L. Mitran, D. Dragoman – Ab initio investigations of ballistic graphene Y-

junctions in transversal electric field, to be finalized and submitted at J. Appl. Phys.  

A2: D. Dragoman – Tunable fractional Fourier transform implementation of electronic 

wavefunctions in atomically thin materials, submitted at Nanotechnology 
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