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on the implementation of the project PN-III-P4-ID-PCE-2016-0122, entitled Nanostructures 

for quantum and plasmonic computing in the period January – December 2018 

 

In the 2018 stage of the project, we focused on the activities  

Act. 2.1 – Development of a ballistic configuration for quantum circuits using edge states,  

Act. 2.2 – Investigation of new configurations for quantum computing using spins in 

nanostructures with gate-tunable Rashba spin-orbit coupling,  

Act. 2.3 – Development of a correspondence between implemenations of qubits with spins 

and valley states, and  

Act. 2.4 – Investigation of new configurations for quantum computing using valley states; this 

activity will be continued in 2019 as Act 3.1.  

The obtained results are detailed in the following. 

Development of a ballistic configuration for quantum circuit implementation using edge 

states  
Presently, there are two ways to implement quantum logic circuits: using nanostructures that 

manipulate localized quantum states of spins [1], charge [2] or superconducting [3], or 

configurations based on the quantum interference in nanosystems with ballistic (collisionless) 

transport. The last way of implementing quantum logic gates, which includes the interference 

between edge states in interferometers defined by quantum point contacts (QPCs) [4] realized 

in two-dimensional electron gases (2DEGs), has the advantage of a good sensitivity [5] and 

possibility of modelling analytically the propagation of electronic wavefunction. Therefore, 

we have focused on finding a compact and reconfigurable configuration for implementing 

logic gates using edge states. 

  

Fig. 1       Fig. 2  

The proposed configuration, represented in Fig. 1, consists of a 3-port interferometer working 

in the integer Hall effect regime in a 2DEG, the charge carriers propagating along the edge 
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states/channels. Two such nterferometers can be combined in order to realize complex logic 

circuits, as suggested in Fig. 2. The input logic states are encoded in the potentials applied on 

the thee QPCs that define the interferometer, the output logic states being determined by the 

transmission coefficient at each gate. As will be shown in the following, this configuration 

allows the implementation of different logic gates at different ports, and so the possibility of 

processing in parallel of different quantum algorithms. 

Assuming a spin-independent scattering at each potential barrier induced by QPCs, and a 

uniform magnetic field B applied along z, perpendicular to the (x,y) plane of the 2DEG, such 

that the vector potential is )0,,0( BxA  , the single-particle Hamiltonian of an electron with 

effective mass m and wavevector components along x and y directions denoted as xk  and, 

respectively, yk , is [4] 
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where d  is the frequency associated to the transverse confinement along x, 22
cdt    

with meBc /  the cyclotronic frequency, and )/( 2
0 mkx tcy  . 

The dispersion relation of the discrete energy levels is  
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the two edge states, located on opposite edges 0x , and correspunding to wavevector 

components yk , propagating at the same (fixed) energy value. We assume that n = 0, such 

that only the fundamental energy level is occupied, i.e. E takes values between 2/t  and 

2/3 t . In a 2DEG the energy of charge carriers (the Fermi level) can be controlled by 

applying a gate voltage [6]. 

The action of each QPCs, situated at ixx  , i = 1,2,3, and assumed to separato regiuns in 

which the electron has the same wavevector k, is modelled by a potential 

)()2/()( 2
iiii xmxU  , the reflexion and transmission coefficients of the QPC depending 

on the applied potential iU  as: )2/( iii ikr   , and, respectively, )2/(2 ii ikikt  .  

Under these circumstances, the output vector of the 3-port interferometer, 

)3,2,1( outoutoutoutT  , depends linearly on the input vector )3,2,1( ininininT  , which 

describes the amplitudes of the input wavefunctions at the three ports: 
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the elements of the matrix M being given by  
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where ijij kL  are the phases acquired at propagation from port i to port j, separated by the 

distance ijL , 312312   , and )exp(1 321  irrr . The transmission coefficient at 

port i is the square of the modulus of outi, i = 1, 2, 3. We associate to this transmission 

coefficient T the output logic value 1 if T > thT , where thT  is a threshold value, and the output 

logic value 0 if T < thT . Similarly, we encode the input logic values in the potentials appliced 

on the three QPC, ),,( 321 UUU , such that each iU , i = 1, 2, 3 has logic value 0 if equal to 

0V 0 or logic value 1 if equal to 1V 0.5 eV.  

For exemplification, in Figs. 3(a), 3(b) and 3(c) we illustrate the energy dependencies of the 3 

ports: 1, 2 and respectively 3, if )0,1,1(Tin , the input logic states encoded as ),,( 321 UUU  

being specified in the legend. In this case, the transmission coefficient maxima at each port 

can be higher than 1 (but smaller than 2), since there are two inputs, each with amplitude 1. 

We used in simulations 0067.0 mm  , with 0m  the free electron mass (as in the 2DEG system  

GaAs/AlAs),  cd    4 meV, and  312312 LLL  100 nm. The three-dimensional 

representations on the right of Figs. 3(a)-(c) show the same dependencies, emphasizing the 

overlapping curves. 

As can be observed from these figures, the transmission coefficients at all ports vary 

continuously with energy, except for the input logic state (111), for which it has abrupt 

variations at resonant energies, rE . Depending on the values of energy E, the chosen 

threshold values and the potentials applied on the QPC, Figs. 3(a)-(c) suggest that at each port 

one can implement the following operations/logic gates: 

I. For out1,  

i) at resonant energies Er, for thT  = 0.5, we can implement: 

a) the logic gate OR for U1 and U2, if U3 = 0 

b) the logic gate NAND for U1 and U3, if U2 = 1 

c) the logic gate NAND for U2 and U3, if U1 = 1 

d) the logic gate Set 1 (sets the output logic gate as 1), if (U2,U3) = (01) or (10) 

ii) outside resonance, for thT  = 0.3, we can implement: 

a) the logic gate OR for U1 and U3, irrespective of U2 

b) the logic gate Set 1, if U1 = 1 or U3 = 1 

iii) at E  4.3 meV, for thT  = 1.2, we can implement: 

a) the logic gate Erase (sets the output logic gate as 0) for U1 = 1, irrespective of U2 and U3 

b) the logic gate AND for U2 and U3, if U1 = 0 

iv) at E  5.7 meV, for thT  = 1.25, we can implement: 

a) the logic gate Erase if (U1,U2) = (00), (01) or (11), irrespective of U3 
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b) the logic gate AND for U1 and U3, if U2 = 0 

       (a)                                    

(b) 

(c)                    Fig. 3 

v) at E  6 meV, for thT  = 0.7, we can implement: 

a) the logic gate NOR for U1 and U3, if U2 = 0 

b) the logic gate Set 1 if U1 = 1, irrespective of U2 and U3 
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c) the logic gate Identity for U1, if (U2,U3) = (00), (10), or (11) 

vi) at E  7.7 meV, for thT  = 1.2, we can implement: 

a) the logic gate Erase if U3 = 0, irrespective of U1 and U2 

b) the logic gate AND for U1 and U3, if U2 = 0 

c) the logic gate AND for U2 and U3, if U1 = 0 

d) the logic gate CNOT if U3 = 1, with U1 the target bit and U2 the control bit  

II. For out2, 

i) at resonant energies Er, for thT  = 0.5, we can implement: 

a) the logic gate NOR for U1 and U2, if U3 = 1 

b) the logic gate NOR for U1 and U3, if U2 = 1 

c) the logic gate CNOT if U1 = 1, with U2 target bit and U3 control bit  

d) the logic gate Set 1, if U1 = 0, irrespective of U2 and U3 

e) the logic gate NOT for U1, if (U2,U3) = (00) or (11) 

ii) outside resonance, for thT  = 0.3, we can implement: 

a) the logic gate OR for U2 and U3, if U1 = 0 

b) the logic gate Set 1, if U1 = 0, U2 = 1 or U3 = 1 

iii) at E  4.8 meV, for thT  = 1.2, we can implement: 

a) the logic gate Erase if U1 = 0, U2 = 1 or U3 = 0 

b) the logic gate AND for U1 and U3, if U2 = 0 

iv) at E  5.7 meV, for thT  = 0.8, we can implement: 

a) the logic gate Set 1 if U1 = 0 or U2 = 1 

v) at E  6 meV, for thT  = 1.2, we can implement: 

a) the logic gate Erase if U1 = 1 or U2 = 0 

b) the logic gate NOT for U1, if (U2,U3) = (10) or (11) 

III. For out3, 

i) outside resonance, for thT  = 0.5, we can implement: 

a) the logic gate NOR for U2 and U3, if U1 = 1 

b) the logic gate NOT for U3, if (U1,U2) = (00), (01) or (10) 

ii) outside resonance, at E  5-7 meV, for thT  = 0.8, we can implement: 

a) the logic gate NOR for U2 and U3, irrespective of U1 

iii) outside resonance, at E  4-5.2 meV, for thT  = 0.8, we can implement: 

a) the logic gate NOR for U1 and U3, if U2 = 1 

b) the logic gate NOR for U2 and U3, if U1 = 1 

c) the logic gate NAND for U1 and U2, if U3 = 0 

d) the logic gate NOT for U3, if (U1,U2) = (00) or (10) 

e) the logic gate Erase if U3 = 1, irrespective of U1 or U2 

iv) at resonance, E  5.2 meV, for thT  = 0.8, we can implement: 

a) the logic gate modified CNOT (modifies the target bit value if the control bit is 0) if U1 = 1, 

with U3 target bit and U2 control bit  
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Because the wavefunctions can be detected at each outputs/ports, the examples above suggest 

that one can implement at each port a large number of logic gates at determined energies (via 

gae voltages) and threshold values for the transmission coefficient/measured current. Similar 

results are obtained for )0,0,1(Tin  and )1,1,1(Tin . 

Besides offering the possibility to process in parallel different quantum gates/algorithms at 

different outputs for the same input logic states, the 3-port configuration in Fig. 1 can be 

combined with another similar one (see Fig. 2), such that the first interferometer (with ports 1, 

2 and 3) is conditioned by the output of the second one (with ports 1’, 2’ and 3’). In addition, 

the logic gate implemented at ports 1 or 3 is restricted/selected among the possible 

implementations (see the examples above) by the fact that QPC2 is identical to cu QPC2’. 

The simulation results fo this 3-port interferometric configuration that uses edge states are 

submitted to an ISI journal (see A1). 

 

Investigation of new configurations for quantum computing using spins in 

nanostructures with gate-controlled Rashba spin-orbit coupling  
We have studied two configurations, both implemented in a 2DEG with gate-controlled 

Rashba spin-orbit coupling, in which charge carriers propagate in the ballistic regime. In these 

configurations the qubit is coded in spin states, allegedly robust, and is manipulated via the 

Rashba spin-orbit interaction. 

The first configuration, represented in Fig. 4, consists of two incoming quantum wires, a and 

b, cupled via the Rashba interaction in the region 0, which modulates the functionality of the 

system, allowing the implementation of logic gates such as OR, AND XOR or CNOT. The 

outgoing quantum wires are denited c and d. The coupling region, with a tuneable Rashba 

coefficient , contains a QPC, formed from two barriers of height V0 and areas y1×w and 

y2×w, which can be symmetric or asymmetric. The interface between the coupling region 

and the s regions in which the quantum wires are separated is denoted by s and has an area 

Lx×Ly.  

 Fig. 4 

The ballistic transport in this system is modelled by the R-matrix model [7, 8]. For the system 

in Fig. 4we define four input logic states S = A, B,C, D as: 

baA  |
2
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1
, baB  |
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corresponding to (a,b): (0,0), (0,1), (1,0), (1,1). The electrons prepared in one of the S states 

by a coherent superposition of the wavefunctions in the input quantum wires a and b interfere 
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in teh coupling region, so that in the outgoing wires s = c, d we obtain spin-polarized currents, 

with the polarization,  

)/()( S
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S
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s

S

s

S
s TTTTp
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                                                                                            (7) 

where S

s
T

,
 denotes the transmission coefficient from state S to state s for electrons with 

spins up and down, respectively, and the logic values of output states is defined in terms of 

the polarization sign.  

  

Fig. 5            Fig. 6 

To exemplify the working of the system in Fig. 4, we assume that the sign of polarization can 

be determined unambiguously for a net spin current higher than 10%, and define an LG index 

of realization of the given logic gate as +1 for AND, -1 for NAND, +2 for OR, -2 for NOR, 

+3 for XOR, -3 for XNOR and +4 for CNOT. The objective is to establish, for electrons with 

a certain energy if, by varying the Rashba coefficient in the interval [-max, max], with max = 

20 meV nm, we can implement these gates. If we can do this, the LG index takes the indicated 

value, otherwise LG = 0. The energy dependence of LG for a symmetric QPC with y1 = y2 

= Ly/4, w = Lx/8, fabricated in an InAs 2DEG, with m = 0.023m0, Lx = 4 m, Ly = 1 m, and V0 

= 1 eV, is presented in Fig. 5(a) for spin current measurements in terminal c, respectively in 

Fig. 5(b) for measurements in terminal d. Due to the symmetry, XORc = XNORd and XORd = 

XNORc, at an energy of 0.21 meV being possible to implement all studied logice gates, 

except CNOT, for distinct values of . The spin polarization values at E = 0.21 meV for the 

four posible input states in terminal c (black curve) and d (red curve) are illustrated in Fig. 6 

as a function of the Rashba coefficient, the vertical lines indicating the  value for which the 

logic gates with the same line type as in Fig. 5 can be implemented in terminal c. As can be 

seen from Fig. 6, the spin polarizations have the following symmetries: )()(   D
d

A
c pp , 

)(B
cp  )(  B

dp , )()(   C
d

C
c pp , )()(   A

d
D
c pp . 

From Fig. 5 it follows that the CNOT gate cannot be implemented in a structure with a 

symmetric QPC. Therefore, we studied an asymmetric structure with y1 = 0, y2 = 0.75Ly, 

the rest of the parameters being the same. The corresponding results, presented in Fig. 7, show 

that in this case one can implement also the logic gate CNOT, at E = 0.14 meV being possible 

to implement all gates AND, OR, NOR and CNOT at different values of the Rashba 

coefficient/applied gate voltage. From Fig. 8, which illustrates the polarizations of the spin 

currents, it can be observed that in an asymmetric QPC only the symmetry relations 
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)()(   D
d

A
c pp  and )()(   A

d
D
c pp  hold, and the polarizations are maxima for  = 

0. 

  

Fig. 7            Fig. 8 

These results, which show that the functionality of the configuration in Fig. 4 can be modified 

by varying a single parameter: /gate voltage, so that several logic gates: AND/NAND, 

OR/NOR, XOR/XNOR and CNOT (for an asymmetric QPC) can be implemented, are being 

submitted to an ISI journal (vezi A2). 

The second proposed configuration for implementing logice gates in a 2DEG with variable 

Rashba coefficients i in different regions subjected to different gate voltages, that can be 

independently controlled, is illustrated in Fig. 9. The advantage of this simple configuration is 

that the transport/transmission coefficient of ballistic electrons with energy E and effective 

mass m can be obtained analytically. More precisely, for a one-dimensional structure along x, 

with a Rashba Hamiltonian /2/2
xyx pmpH  , the wavefunction in each segment j, 

can be written as 

  |)exp(|)exp(|)exp(|)exp( xikdxikcxikbxika jjjjjjjjj          (8) 

where | , |  are the spin-up and spin-down eigenfunctions, and 

22 /2 mEkkk RjRjj  , with 2/mk jRj  . Applying at each interface the conti-

nuity condition for the wavefunction and that of current conservation, we obtain the following 

relation between the coefficients a, b, c, d at the input (layer 1) and output (layer 7) [9]: 
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where 

   Fig. 9 
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Then, the transmission coefficient of the spin-up wavefunction, for example, is T = 1/|M11|
2
, 

where M11 is the (1,1) element of the total matrix M. 

To obtain as large as possible modulations of the transmission coefficient of ballistic 

electrons, we looked for systems with a large Rashba coefficient and a long mean free path. 

Such a system is the bidimensional interface LaAlO3/SrTiO3, in which quasi-onedimensional 

structures can be induced, and which has a mean free path of 20 m at a temperature of 50 

mK [10] and a giant Rashba coefficient, kR = 10
9
 m

-1
 [11]. The simulations in Fig. 10 

correspond to L1 = L2 = L3 = D1 = D2 = 50 nm, the input logic states being encoded in the 

Rashba coefficients values in the 3 regions, the 0 logic state being associated to kRi = 10
4
 m

-1
, 

i = 1,2,3 while the 1 value corresponds to kRi = 8×10
8
 m

-1
. The output logic state is encoded in 

the transmission coefficient value. Thus, when the logic value of kR3 = 0 (see Fig. 10(a)), the 

studied configuration is equivalent with one with two inputs (a similar situation holds for kR1 

= 0 or kR2 = 0, in the last case the distance between input states /gate electrodes being 

threefold) and implements the AND gate for inputs 1 and 2 (encoded in kR1 and kR2) at 

energies for which T for (1,1,0) is much smaller than for (0,0,0), (1,0,0) and (0,1,0), for 

instance at E = 1.6 or 1.9 meV if the output logic state is 1 for T < 0.5 and zero otherwise, or 

at 2.7, 3.05 or 4 meV if the output logic state is 1 for T < 0.6 and zero otherwise; by 

identifying the output logic state with 1 for T < 0.9, at the same energies one can implement 

the OR gate. On the contrary, at E = 1.8 and 3 meV one can implement the logic gate CNOT 

with the control bit at the second input if T < 0.85 is associated with the logic value 1 and 

with 0 otherwise. If kR2 = 0 also, the configuration implements the NOT gate for input 1 at the 

energies 1.7, 2.9 or 4 meV if the output logic state is 0 for T < 0.9 and 1 otherwise. On the 

other hand, Figs. 10(a) and 10(b) suggest that a modified CCNOT gate (inverts the logic value 

of the target bit – at the input 3 – if the logic values of the other two bits are 0) can be 

implemented at E = 4 meV if the output is 0 for 0.6 < T < 0.9. 
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(a) (b)  Fig. 10 

The original results regarding the functioning of a succesion of 3 regions with variable 

Rashba coefficients as logic gates are being finalized in order to be submitted for publication 

in a ISI journal (see A3). 

 

Development of a correspondence between quantum spin and valley states for 

implementing new quantum computing configurations using valley states  
Besides spin, the valley degree of freedom, although less studied, can implement logic gates 

with low power consumption. The advantage is that such logic gates are expected to have a 

longer coherence time, since the valley degree of freedom is more robust than spin at 

scattering/collisions due to a larger separation in the reciprocal space of the two unequivalent 

states. During activity 2.3 we realized a comparison/correspondenţce between the degrees of 

freedom of spin and valley with the aim of identifying/proposing logic gates based on valley 

states starting from logic circuit configurations based on spin qubits. In order to be relevant 

for this aim, such a correspondence cannot be limited to a formal identification of the two 

spin-up and spin-down states to the two unequivalent valley states, K and K’, especially 

because the control of valley states is material-dependent, unlike the spin states that can be 

manipulated with a magnetic field, irrespective of the material. As such, the study regarding 

the excitation/detection modes of valley states, as well as of the manipulation mechanisms of 

this degree of freedom must be discussed separately with respect to the two types of materials 

in which the valley degree of freedom has been evidenced teoretically and/or experimentally: 

graphene (including bilayer graphene) and dichalcogenides. In this study we have taken into 

consideration only those characteristics that allow implementation of logic gates based on the 

interference/propagation of valley states in ballistic structures, and not on localized valley 

states (on potential wells, for example, as in [12]). 

The vast majority of studies on valley states have concentrated up to now on their different 

excitation, in order to induce valley polarization and to mimic correspondic effects for spin 

states, such as Zeeman [13] or Hall [14]. 

Valley polarization can be achieved in principal by applying a uniaxial mechanic stress on a 

graphene sheet with mass/bandgap (grown on SiC or hBN substrates [15]), by using 

ferromagnetic electrodes in the case of dichalcogenides [16], or by optical excitation with an 

electromagnetic field polarized either circular [17] or elliptic [18]. Although in the case of 

optical excitation the valley polarization can be controlled, reaching values up to or over 90%, 

this method is difficult to be applied in integrated circuits. 

Regarding dichalcogenides, or TMD (transition metal dichalcogenides), these are materials of 

type MX2, where M is a transition metal (Mo, W, etc.) and X a chalcogenid (S, Se or Te). A 
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common characteristic of these materials, especially of atomic layers of these materials, is that 

the spin and valley states are coupled due to inversion symmetry breaking caused by their 

crystalline structure and the large spin-orbit coupling. This fact, and the fact that these 

materials have a mean free path/mobility significantly lower than in, limit the use of TMDs 

for implementing spin qubits.  

On the other hand, in graphene sheets with a bandgap of width  in which the charge carriers 

with momentum p have an effective mass m, there is the valley-orbit interaction mechanism, 

described by the Hamiltonian 

zp ˆ)(
4




 V
m

Hvo


                                                                                                     (10) 

where  is a valley index equal to -1 for K and +1 for K’ and V is the potential energy. This 

Hamiltonian is in fact similar to that describing the Rashba spin-orbit coupling: 

σEEp  |)|/(



soH                                                                                                    (11) 

where E is the electric field and  is the Rashba coefficient. Although the valley-orbit 

interaction has a greater tunability potential in bilayer graphene than in monolayer graphene, a 

gate voltage in the first case allowing the independent control of both Fermi level and 

bandgap width [19], even in monolayer graphene this interaction mechanism induces valley 

polarization via an electric field applied by a side gate [20]. In addition, in monolayer 

graphene the two valley states are mixed in a proportion of 50:50 in an armchair nanoribbon, 

the resulting state being suitable to be used as starting state in quantum algorithms, being 

equivalent to that obtained by applying a Hadamard gate. 

As result of activity Act. 2.3 we reached the following conclusions necessary to finalize Act. 

2.4 in 2019, according to the Realization plan of the project: 

- as material for logic gates involving valley states, the most suitable from the point of view of 

mean free path and the possibility of manipulating these states is bilayer graphene, although it 

is not clear up to now if armchair nanoribbons from this material can be used as starting states 

for quantum algorithm implementation;  

- as manipulation mechanism of valley states, the most suitable for implementing interference/ 

propagation based logic gates is the valley-orbit interaction – mechanism specific to graphene, 

including bilayer graphene, which can be controlled by gate voltages; 

- as excitartion/detection mechanism of valley states, we identified the most suitable one as 

being that using armchair nanoribbons in conjunction with Bell-state measurements/spatial 

separation of different valley states  

- as promissing configurations for logic gates, we will concentrate on similar ones to those 

reported here involving spin states in the presence of the Rashba effect 

 

Preliminary results regarding the development of plasmonic logic gate configurations 

using slot waveguides  
Although the design of plasmonic logic gate configurations on slab waveguides is expected to 

be studied in the 2019 stage of the project, we have considered necessary to start investigating 

this subject earlier due to its complexity. More precisely, we have performed a preliminary 

identification of possible configurations of interest and modeled them with a simple method 
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based on the analogy with transmission lines. In 2019 we intend to improve the simulation 

method using performant computing algorithms and to optimize them in order to fabricate 

such logic circuits based on plasmonic slot waveguides.  

We have identified two configurations of plasmonic logic gates of interest. The first one refers 

to reconfigurable logic gates, potentially interesting, but quite difficult to realize 

experimentally since not only the fabrication of slot waveguides must be controlled strictly 

but also the realization of the regions with a variable refractive index (graphene or liquid 

crystals). The second configuration is based on ring-shaped plasmonic waveguides, with 

several input/output ports, less technologically demanding, but the simulation of which should 

be improved to take into account the influence of the curvature on plasmon propagation. We 

detail these configurations in the following. 

Reconfigurable plasmonic logic gates 

The proposed configuration consists of a slot plasmonic waveguide, of width W, formed from 

a dielectric medium (air) with permittivity a, surrounded by metal (for example, silver), with 

permittivity Ag. Along this waveguide there are several regions, with lengths Li, (i = 1, 2 and 

3 in Fig. 11(a)), with permittivities gr that can be controlled by applied voltages.  

       

Fig. 11                          (a)                                                                  (b) 

As suggested in Fig. 11(b), these regions can be covered by a graphene sheet, the permittivity 

of which can be modified by a gate voltage applied directly on the metal, or by liquid crystals, 

the permittivity of which varies with the bias applied on the two parts of the waveguide, 

which should be isolated. For a graphene-covered waveguide, in which the permittivity can be 

varied in wide ranges [21], we denote by gr0 and gr1 the permittivities correspunding 

to the logic states 0 and, respectively, 1, the associated gate voltages being V0 and V1.  

This configuration can implement plasmonic logic gates with one, two or three bits by 

encoding the input logic states in the tunable permittivity/gate voltage values applied on the 

covered regions, minimizing thus the problems with plasmon excitation. The values of the 

transmission coefficient/transmitance T encode the output logic state. This circuit is based on 

modulating the light interference via varying the permittivity of the covered regions, and can 

be modeled with the help of the analogy with transmission lines [22-24], which holds in slot 

waveguides that support only one propagating mode. For an operating wavelength of 1.55 

m, this restriction imposes that W = 40 nm. 

To illustrate how this circuit works, we consider first the implementation of the logic gate 

NOT, for which only one region with variable permittivity is needed. The dependence of the 

transmitance T on wavelength in this case is shown in Fig. 12(a) for L1 = 355 nm, the solid 

and dashed curves correspunding to 0 = 1.2 and 1 = 5. From this figure it follows that, at  = 

1.55 m, T can have high values, associated to the output logic state/value of 0, for instance, 

or small values, coded as logic state 1. The NOT gate can be implemented by varying the gate 

voltage from V0 to V1.  
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 Fig. 12            (a)                                          (b)                                       (c) 

If the slot waveguide is covered with two graphene sheets of lengths L1 and L2, separated by a 

distance D1, that can be controlled independently by gate voltages, one can implement logic 

operations involving two bits. In the example in Fig. 12(b), in which L1 = L2 = D1 = 100 nm, 

0 = 1.2 and 1 = 4.75, the spectral dependence of the transmission was plotted for the input 

states 00 (solied line), 01 (dashed line), 10 (dotted line) and 11 (dashed-dotted line); the 

notation for the input states, XY (X = 0,1, Y = 0,1), shows that the voltage applied on the first 

graphene region is VX and on the second one is VY. From Fig. 12(b), in which the curves for 

01 and 10 overlap, and the curve for 00 has T almost equal to 1 on the whole spectral range, it 

can be observed that at 1.55 m the transmitance is either close to 1 (high) or 0.65 (low). If 

large values of T are associated to the logic value 0 and small values to 1, the proposed 

configuration implements the OR gate, while an opposite association of both input logic states  

(1 for permittivity 0/voltage V0 and 0 for 1/V1) and output logic states (1 for T high, 0 for T 

low) allows the implementation with the same waveguide of the logic gate AND.  

The same configuration with two regions covered with graphene, but for L1 = L2 = 100 nm, D1 

= 45 nm, 0 = 1.2 and 1 = 4.5 can implement the reversible CNOT gate at 1.55 m if the 

input states 0 and 1 correspond to V0 and, respectively, V1, as can be seen from Fig. 12(c) 

illustrating the spectral dependence of T for the input states 00, 01, 10 and 11 with the same 

line type as in the example above; again, the curves for 01 and 10 overlap. However, in this 

case the output logic state 0 is identified with a large value for T and the 1 state with a low T 

value, the target bit being the first bit and the control bit the second one. 

(a)          (b)               Fig. 13     

When there are three graphene sheets, the permittivity of which can be independently 

controlled, one can implement logice gates implying three bits. For instance, to implement the 

universal and reversible Toffoli gate, which changes the logic value of one/target bit if two 

control bits are 1, we can identify the target bit as the first bit/graphene region, with logic 

states 0 and 1 coded in 0t and 1t, and the control bits with the other covered regions, the logic 

states 0 and 1 of which are coded in the permittivity values 0c and 1c. Figures 13(a) and 

13(b) illustrate, respectively, the spectral dependence of the transmitance when the target bit 

is 0 and 0c = 4.75, 1c = 1.2, and, respectively, when it has the value of 1 and 0c = 1.2, 1c = 
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4.75, for  L1 = L2 = L3 = D1 = D2 = 100 nm, 0t = 1.2 and 1t = 5. The continuous, dashed and 

dashed-dotted black curves in Fig. 13(a) correspond to the states of th three graphene-covered 

regions (in order) 000, 010 and 001, and the magenta curve corresponds to the state 011. 

Similarly, the continuous, dashed and dashed-dotted red curves in Fig. 13(b) correspond to the 

input states 100, 110 and 101, and the blue curve to 111. These dependences, which indicate a 

change in the transmitance from small to large values around  = 1.55 m when both control 

bits are 1, correspond to the Toffoli gate if we define the output logic state as 0 when T is 

small (< 0.7) and 1 when T is large (> 0.95) in Figs. 13(a) and oppositely in Fig. 13(b)). 

The results regarding the simulation of this reconfigurable plasmonic configuration with one, 

two or three covered regions (actually, with three regions, each of which equivalent to air if 

the relative permittivity is tuned to 1) was accepted an an ISI journal (see A4)  

Ring-shaped logic circuits, with multiple input/output ports 

This configuration is compact, versatile, and can be easily combined in cascade to implement 

complex computing algorithms, the output logic states, encoded in the transmittance value in 

one port, depending on the geometry and the phase of incident electromagnetic fields in all 

other ports. In particular, we have studied configurations with 3 (see Fig. 14(a)) and 4 ports, 

concluding that, once the number of ports increases the complexity of the response increases 

also and, respectively, the fabrication tolerances become stricter. Therefore, it is preferable to 

arrange in cascade two 3-port circuits, as in Fig. 14(b), than to use configurations with a larger 

number of ports. As in the previous configuration, the propagation of electromagnetic fields in 

multi-port ring-shaped plasmonic waveguides was simulated using the analogy with the 

transmission modes, method that can be applied if only one propagating mode exists. In 

addition, we have chosen symmetric configurations to take advantage of the even-odd mode 

analysis method in transmission line circuits. In all cases the width of the Ag/aer/Ag slot 

waveguide is d = 50 nm and the excitation wavelength is  = 550 nm. 

 

Fig. 14                    (a)                                                                    (b) 

For example, in a symmetric structure, as in Fig. 14(a), for which 12 2ll   (lengths measured 

between the centers of the input/output waveguides), the output intensity 
2|| tT  , with 

amplitude t, is represented in Fig. 15 as a function of 1l , the complex input signals at ports 1 

and 2 being denoted as 1a  and exp2a , with a1, a2 the signal amplitudes and   their relative 

phase. From this figure, which shows the results for a1 = 1, a2 = 1,  = 0; a1 = 1, a2 = 0 or a1 = 

0, a2 = 1, irrespectiv of  ; and a1 = 1, a2 = 1,  =   or a1 = 0, a2 = 0 (see the legend), it 

follows that T is periodic in 1l /the output intensity is maximum if SPPkl1  is an integer 
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multiple of , and this maximum T value is 4 times larger than the value corresponding to the 

case when only one input is present.  

 

               Fig. 15                                            Fig. 16                                    Fig. 17 

For T maxim, codând stările logice de intrare 0 and 1 în valorile 0 and 1, respectiv 0 and 1.2, 

ale amplitudinilor la porturile 1 and 2 [25], se observă din Fig. 16 că circuitul cu 3 porturi 

implementează poarta ireversibilă OR for  = 0 (intrări în fază) if starea logică de la ieandre 

este identificată ca 1 for T > 0.3 and 0 în caz contrar. În Fig. 16 (vezi legenda) sunt 

reprezentate curbele corespunzătoare intrărilor (a1, 2a ) = (0,1), (1,1), (0,0) and (1,0). În mod 

analog, for =  (intrări în anti-fază), circuitul poate implementa poarta ireversibilă XOR for 

acelaand mod de definire a stării de ieandre, adică ieandrea este 1 doar if (a1,a2) = (0,1) sau 

(1,0). Pe de altă parte, if în Fig. 15 starea logică de ieandre 1 corespunde la T > 1 and este 0 în 

caz contrar, circuitul implementează poarta ireversibilă AND if intrările sunt în fază, adică 

valoarea la ieandre este 1 doar if (a1,a2) = (1,1).  

Circuitul cu 3 porturi poate implementa and poarta reversibilă CNOT gate, care inversează 

valuarea logică a unui qubit if bitul de control este 1 and îl lasă neschimbat în caz contrar. 

More precisely, as shown in Fig. 16, for the control bit at port 2 and the target bit at port 1, the 

circuit implements the CNOT gate if   takes values between 0.7 and 1.3  (for instance,  

=) and if the output bit is 1 for T > 0.3. In particular, if there is qubit/logic state 1 at port 2, 

the configuration implements the NOT gate for the input at port 1 in the same conditions as 

above. Analogously, one can find/define output states in a 4-port configuration as a function 

of its dimensions, and the amplitudes and phases of the input signals. 

To illustrate how a cascaded configuration of two 3-port ring waveguides, as in Fig. 14(b), 

can implement the CCNOT gate, we consider two circuits with SPPkl1  an integer multiple of 

and 12 2ll  , in which the logic values 1 of the input states (a1,a2,a3) are encoded in the 

amplitude values 11 a , 4.032  aa , and have the logic value 0 if there is no signal at the 

respective port. The dependence of the output intensity at port 4 on the phase diference  

between the inputs at the left circuit (port 1 and the output – port 3 of the right circuit)/length 

L is represented in Fig. 17 for in-phase inputs at ports 2 and 3 for (a1,a2,a3) = (1,1,1) (blue 

line), (1,0,0) or (0,1,1) (red line), (1,0,1) or (1,1,0) (magenta), (0,0,1) or (0,1,0) (black line) 

and (0,0,0) (green). Figure 17 demonstrates that the circuit consisting of two cascaded ring 

waveguides can implement the CCNOT gate for the target bit at port 1 if the other bits/inputs 

are control bits and if the output intensity has the logic state 1 for T > 0.2 for   in the interval 

0.75 – 1.2. 

The results obtained regarding the modeling of multi-port slot waveguides circuits were 

acceptate spre publicare într-o revistă ISI (vezi A5), and au fost diseminate la o conferinţă 

internaţională (vezi C3).  
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In parallel with modeling possible logic plasmonic configurations, we have obtained some 

preliminary results on the fabrication of some slot waveguides, which we have disseminated 

at two international conferences (C4 and C5) 
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