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on the implementation of the project PN-111-P4-ID-PCE-2016-0122, entitled Nanostructures
for quantum and plasmonic computing in the period January — December 2018

In the 2018 stage of the project, we focused on the activities
Act. 2.1 — Development of a ballistic configuration for quantum circuits using edge states,

Act. 2.2 — Investigation of new configurations for quantum computing using spins in
nanostructures with gate-tunable Rashba spin-orbit coupling,

Act. 2.3 — Development of a correspondence between implemenations of qubits with spins
and valley states, and

Act. 2.4 — Investigation of new configurations for quantum computing using valley states; this
activity will be continued in 2019 as Act 3.1.

The obtained results are detailed in the following.

Development of a ballistic configuration for quantum circuit implementation using edge
states

Presently, there are two ways to implement quantum logic circuits: using nanostructures that
manipulate localized quantum states of spins [1], charge [2] or superconducting [3], or
configurations based on the quantum interference in nanosystems with ballistic (collisionless)
transport. The last way of implementing quantum logic gates, which includes the interference
between edge states in interferometers defined by quantum point contacts (QPCs) [4] realized
in two-dimensional electron gases (2DEGS), has the advantage of a good sensitivity [5] and
possibility of modelling analytically the propagation of electronic wavefunction. Therefore,
we have focused on finding a compact and reconfigurable configuration for implementing
logic gates using edge states.
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The proposed configuration, represented in Fig. 1, consists of a 3-port interferometer working
in the integer Hall effect regime in a 2DEG, the charge carriers propagating along the edge



states/channels. Two such nterferometers can be combined in order to realize complex logic
circuits, as suggested in Fig. 2. The input logic states are encoded in the potentials applied on
the thee QPCs that define the interferometer, the output logic states being determined by the
transmission coefficient at each gate. As will be shown in the following, this configuration
allows the implementation of different logic gates at different ports, and so the possibility of
processing in parallel of different quantum algorithms.

Assuming a spin-independent scattering at each potential barrier induced by QPCs, and a
uniform magnetic field B applied along z, perpendicular to the (x,y) plane of the 2DEG, such
that the vector potential is A = (0, Bx,0), the single-particle Hamiltonian of an electron with

effective mass m and wavevector components along x and y directions denoted as Kx and,
respectively, Ky, is [4]
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where @y is the frequency associated to the transverse confinement along X, @y =y @F + @?

with e, =eB/m the cyclotronic frequency, and Xq =7k @, /(a)tzm).

The dispersion relation of the discrete energy levels is
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the two edge states, located on opposite edges +X,, and correspunding to wavevector
components +k,, propagating at the same (fixed) energy value. We assume that n = 0, such
that only the fundamental energy level is occupied, i.e. E takes values between e, /2 and

3hiw, /2. In a 2DEG the energy of charge carriers (the Fermi level) can be controlled by
applying a gate voltage [6].

The action of each QPCs, situated at x =x;, i = 1,2,3, and assumed to separato regiuns in

which the electron has the same wavevector k, is modelled by a potential
U;(x) = (h2 12m)y;5(X;), the reflexion and transmission coefficients of the QPC depending

on the applied potential Ui as: r; = »; /(2ik — y;), and, respectively, t; = 2ik /(2ik — ;).
Under these circumstances, the output vector of the 3-port interferometer,

out” = (outl,out2,out3), depends linearly on the input vector in' = (inl,in2,in3), which
describes the amplitudes of the input wavefunctions at the three ports:

OUtl M 11 M12 M13 |n1
Out2 = MZl MZZ M23 |n2 (3)
out3 M3; M3z, Mgjs in3

the elements of the matrix M being given by
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where ¢; =KLj; are the phases acquired at propagation from port i to port j, separated by the

distance Lij, ® =g, + g + g1, and A =1-1yr,r3 exp(i®) . The transmission coefficient at
port i is the square of the modulus of outi, i = 1, 2, 3. We associate to this transmission
coefficient T the output logic value 1 if T > Ty, , where Ty, is a threshold value, and the output
logic value O if T < Ty, . Similarly, we encode the input logic values in the potentials appliced
on the three QPC, (U,,U,,U3), such that each U;, i = 1, 2, 3 has logic value 0 if equal to

Vo =0 or logic value 1 if equal to V1 =0.5eV.

For exemplification, in Figs. 3(a), 3(b) and 3(c) we illustrate the energy dependencies of the 3
ports: 1, 2 and respectively 3, if inT = (1,1,0), the input logic states encoded as (U;,U,,U3)
being specified in the legend. In this case, the transmission coefficient maxima at each port
can be higher than 1 (but smaller than 2), since there are two inputs, each with amplitude 1.
We used in simulations m =0.067m, with m; the free electron mass (as in the 2DEG system
GaAs/AlAs), oy =haw, = 4 meV, and Ly, =L,3 =Lz; = 100 nm. The three-dimensional

representations on the right of Figs. 3(a)-(c) show the same dependencies, emphasizing the
overlapping curves.

As can be observed from these figures, the transmission coefficients at all ports vary
continuously with energy, except for the input logic state (111), for which it has abrupt
variations at resonant energies, E,. Depending on the values of energy E, the chosen

threshold values and the potentials applied on the QPC, Figs. 3(a)-(c) suggest that at each port
one can implement the following operations/logic gates:

|. For outl,

1) at resonant energies E,, for Ty, = 0.5, we can implement:

a) the logic gate OR for U; and Uy, if U3 =0

b) the logic gate NAND for U; and Ug, if U, = 1

c) the logic gate NAND for Uy and Us, if Uy =1

d) the logic gate Set 1 (sets the output logic gate as 1), if (U2,U3) = (01) or (10)

i) outside resonance, for Ty, = 0.3, we can implement:

a) the logic gate OR for U; and Us, irrespective of U,
b) the logic gate Set 1, if Uy =1orUs; =1

iii) at E = 4.3 meV, for Ty, = 1.2, we can implement:

a) the logic gate Erase (sets the output logic gate as 0) for U; = 1, irrespective of U, and U;
b) the logic gate AND for U, and U3, if U; =0

iv) at E = 5.7 meV, for Ty, = 1.25, we can implement:
a) the logic gate Erase if (U1,U,) = (00), (01) or (11), irrespective of Uz



b) the logic gate AND for U; and U3, if U; =0
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v) at E = 6 meV, for T, = 0.7, we can implement:

a) the logic gate NOR for U; and Us, if U, =0
b) the logic gate Set 1 if U; = 1, irrespective of U, and U3



¢) the logic gate Identity for Uy, if (U,,Us) = (00), (10), or (11)

vi)at E = 7.7 meV, for Ty, = 1.2, we can implement:

a) the logic gate Erase if U3 = 0, irrespective of U; and U,

b) the logic gate AND for U; and U3, if U, =0

c) the logic gate AND for Uz and U, if U; =0

d) the logic gate CNOT if Uz = 1, with U, the target bit and U, the control bit

I1. For out?,

1) at resonant energies E,, for Ty, = 0.5, we can implement:

a) the logic gate NOR for Uy and Uy, if U3 =1

b) the logic gate NOR for U; and Us, if U =1

c) the logic gate CNOT if U; = 1, with U, target bit and U3 control bit
d) the logic gate Set 1, if U; =0, irrespective of U, and U3

e) the logic gate NOT for Uy, if (Uz,Us3) = (00) or (11)

i) outside resonance, for Ty, = 0.3, we can implement:

a) the logic gate OR for U, and Us, if U; =0
b) the logic gate Set 1, if Uy =0, U, =10or Uz =1

iii) at E = 4.8 meV, for Ty, = 1.2, we can implement:

a) the logic gate Erase if Uy =0, U, =10r U3 =0
b) the logic gate AND for U; and U3, if U, =0

iv) at E = 5.7 meV, for T, = 0.8, we can implement:
a) the logic gate Set 1 if Uy =0or U, =1

v) at E= 6 meV, for Ty, = 1.2, we can implement:

a) the logic gate Erase if Uy =1o0r U, =0
b) the logic gate NOT for U;, if (U,,U3) = (10) or (11)

[11. For out3,

1) outside resonance, for T,;, = 0.5, we can implement:

a) the logic gate NOR for U, and Us, if U; =1

b) the logic gate NOT for Us, if (Uy,U,) = (00), (01) or (10)

if) outside resonance, at E = 5-7 meV, for T, = 0.8, we can implement:
a) the logic gate NOR for U, and Us, irrespective of U,

iii) outside resonance, at E = 4-5.2 meV, for Ty, = 0.8, we can implement:
a) the logic gate NOR for U; and U3, if U, =1

b) the logic gate NOR for U, and U3, if U; = 1

c) the logic gate NAND for U; and U, if U3 =0

d) the logic gate NOT for Us, if (U1,U2) = (00) or (10)

e) the logic gate Erase if Uz = 1, irrespective of U; or U,

iv) at resonance, E = 5.2 meV, for T, = 0.8, we can implement:

a) the logic gate modified CNOT (modifies the target bit value if the control bit is 0) if U; =1,
with U3 target bit and U, control bit



Because the wavefunctions can be detected at each outputs/ports, the examples above suggest
that one can implement at each port a large number of logic gates at determined energies (via
gae voltages) and threshold values for the transmission coefficient/measured current. Similar

results are obtained for inT = (1,0,0) and in" = (1,11).

Besides offering the possibility to process in parallel different quantum gates/algorithms at
different outputs for the same input logic states, the 3-port configuration in Fig. 1 can be
combined with another similar one (see Fig. 2), such that the first interferometer (with ports 1,
2 and 3) is conditioned by the output of the second one (with ports 1°, 2’ and 3°). In addition,
the logic gate implemented at ports 1 or 3 is restricted/selected among the possible
implementations (see the examples above) by the fact that QPC?2 is identical to cu QPC2’.

The simulation results fo this 3-port interferometric configuration that uses edge states are
submitted to an ISI journal (see Al).

Investigation of new configurations for quantum computing using spins in
nanostructures with gate-controlled Rashba spin-orbit coupling

We have studied two configurations, both implemented in a 2DEG with gate-controlled
Rashba spin-orbit coupling, in which charge carriers propagate in the ballistic regime. In these
configurations the qubit is coded in spin states, allegedly robust, and is manipulated via the
Rashba spin-orbit interaction.

The first configuration, represented in Fig. 4, consists of two incoming quantum wires, a and
b, cupled via the Rashba interaction in the region Qo, which modulates the functionality of the
system, allowing the implementation of logic gates such as OR, AND XOR or CNOT. The
outgoing quantum wires are denited ¢ and d. The coupling region, with a tuneable Rashba
coefficient ¢, contains a QPC, formed from two barriers of height V, and areas Ay;xw and
Ay,xw, which can be symmetric or asymmetric. The interface between the coupling region
and the Qg regions in which the quantum wires are separated is denoted by I's and has an area
LexLy.
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The ballistic transport in this system is modelled by the R-matrix model [7, 8]. For the system
in Fig. 4we define four input logic states S = A, B,C, D as:

1 1 1 1

A—E|T>a+ﬁmb7 B—EIT>a+EI¢>b, (62)
1 1 1 1

C—EMa +E|T>b’ D—EN')a +E|‘L>b (6b)

corresponding to (a,b): (0,0), (0,1), (1,0), (1,1). The electrons prepared in one of the S states
by a coherent superposition of the wavefunctions in the input quantum wires a and b interfere



in teh coupling region, so that in the outgoing wires s = ¢, d we obtain spin-polarized currents,
with the polarization,

ps = (T ~TTG +T3) ™

where TSST . denotes the transmission coefficient from state S to state s for electrons with

spins up and down, respectively, and the logic values of output states is defined in terms of
the polarization sign.
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To exemplify the working of the system in Fig. 4, we assume that the sign of polarization can
be determined unambiguously for a net spin current higher than 10%, and define an LG index
of realization of the given logic gate as +1 for AND, -1 for NAND, +2 for OR, -2 for NOR,
+3 for XOR, -3 for XNOR and +4 for CNOT. The objective is to establish, for electrons with
a certain energy if, by varying the Rashba coefficient in the interval [- &max, Gmax], With cmax =
20 meV nm, we can implement these gates. If we can do this, the LG index takes the indicated
value, otherwise LG = 0. The energy dependence of LG for a symmetric QPC with Ay; = Ay,
= Ly/4, w = L/8, fabricated in an InAs 2DEG, with m =0.023mo, Ly =4 um, Ly, =1 pm, and Vy
=1 eV, is presented in Fig. 5(a) for spin current measurements in terminal c, respectively in
Fig. 5(b) for measurements in terminal d. Due to the symmetry, XOR; = XNORy4 and XORq4 =
XNOR¢, at an energy of 0.21 meV being possible to implement all studied logice gates,
except CNOT, for distinct values of «. The spin polarization values at E = 0.21 meV for the
four posible input states in terminal ¢ (black curve) and d (red curve) are illustrated in Fig. 6
as a function of the Rashba coefficient, the vertical lines indicating the « value for which the
logic gates with the same line type as in Fig. 5 can be implemented in terminal c. As can be

seen from Fig. 6, the spin polarizations have the following symmetries: p?(a) = —p(',) (—a),
pe (@)= —Pd (-a), P¢ (@) =P (-), P (@) =—P§ (-a).

From Fig. 5 it follows that the CNOT gate cannot be implemented in a structure with a
symmetric QPC. Therefore, we studied an asymmetric structure with Ay; = 0, Ay, = 0.75Ly,
the rest of the parameters being the same. The corresponding results, presented in Fig. 7, show
that in this case one can implement also the logic gate CNOT, at E = 0.14 meV being possible
to implement all gates AND, OR, NOR and CNOT at different values of the Rashba
coefficient/applied gate voltage. From Fig. 8, which illustrates the polarizations of the spin
currents, it can be observed that in an asymmetric QPC only the symmetry relations
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These results, which show that the functionality of the configuration in Fig. 4 can be modified
by varying a single parameter: a/gate voltage, so that several logic gates: AND/NAND,
OR/NOR, XOR/XNOR and CNOT (for an asymmetric QPC) can be implemented, are being
submitted to an ISI journal (vezi A2).

The second proposed configuration for implementing logice gates in a 2DEG with variable
Rashba coefficients ¢; in different regions subjected to different gate voltages, that can be
independently controlled, is illustrated in Fig. 9. The advantage of this simple configuration is
that the transport/transmission coefficient of ballistic electrons with energy E and effective
mass m can be obtained analytically. More precisely, for a one-dimensional structure along x,

with a Rashba Hamiltonian H = pf I2m—aoy py /7, the wavefunction in each segment j,
can be written as

¥ =a;ep(ik, ;) [T +b; exp(-ik_;x) 1) +c; exp(ik_jx) Ny +d; exp(-ik, jx) N (8)

where [T, N) are the spin-up and spin-down eigenfunctions, and

Kij =2Kgj +\/k§j +2mE/A?% | with KRj =ajm/h2. Applying at each interface the conti-

nuity condition for the wavefunction and that of current conservation, we obtain the following
relation between the coefficients a, b, ¢, d at the input (layer 1) and output (layer 7) [9]:
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where

I, D, I, D, I

S 1 2 3 4 5 6 7 |
(71 (Zz (7.3 Figg
1 1 0 0
S 0 0 1 1
R h(k,j —Kgg)/m —R(k_j +kgj)/m 0 0 !
0 0 h(k_l-i-kRJ)/m —h(k+J—kRJ)/m
Ri (L) = 0 0 exp(—ik_;L;) 0 !
0 0 0 exp(ik,;L;)

Then, the transmission coefficient of the spin-up wavefunction, for example, is T = 1/|My[,
where My, is the (1,1) element of the total matrix M.

To obtain as large as possible modulations of the transmission coefficient of ballistic
electrons, we looked for systems with a large Rashba coefficient and a long mean free path.
Such a system is the bidimensional interface LaAlO3/SrTiOgs, in which quasi-onedimensional
structures can be induced, and which has a mean free path of 20 um at a temperature of 50
mK [10] and a giant Rashba coefficient, kg = 10° m™ [11]. The simulations in Fig. 10
correspond to Ly = L, = L3 = D; = D, = 50 nm, the input logic states being encoded in the
Rashba coefficients values in the 3 regions, the 0 logic state being associated to kg; = 10* m™,
i = 1,2,3 while the 1 value corresponds to kgi= 8x10° m™. The output logic state is encoded in
the transmission coefficient value. Thus, when the logic value of krs = 0 (see Fig. 10(a)), the
studied configuration is equivalent with one with two inputs (a similar situation holds for kg;
= 0 or krz = 0, in the last case the distance between input states /gate electrodes being
threefold) and implements the AND gate for inputs 1 and 2 (encoded in kry and kgp) at
energies for which T for (1,1,0) is much smaller than for (0,0,0), (1,0,0) and (0,1,0), for
instance at E = 1.6 or 1.9 meV if the output logic state is 1 for T < 0.5 and zero otherwise, or
at 2.7, 3.05 or 4 meV if the output logic state is 1 for T < 0.6 and zero otherwise; by
identifying the output logic state with 1 for T < 0.9, at the same energies one can implement
the OR gate. On the contrary, at E = 1.8 and 3 meV one can implement the logic gate CNOT
with the control bit at the second input if T < 0.85 is associated with the logic value 1 and
with 0 otherwise. If kg, = 0 also, the configuration implements the NOT gate for input 1 at the
energies 1.7, 2.9 or 4 meV if the output logic state is 0 for T < 0.9 and 1 otherwise. On the
other hand, Figs. 10(a) and 10(b) suggest that a modified CCNOT gate (inverts the logic value
of the target bit — at the input 3 — if the logic values of the other two bits are 0) can be
implemented at E = 4 meV if the output is 0 for 0.6 < T < 0.9.
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The original results regarding the functioning of a succesion of 3 regions with variable
Rashba coefficients as logic gates are being finalized in order to be submitted for publication
in a ISI journal (see A3).

Development of a correspondence between quantum spin and valley states for
implementing new quantum computing configurations using valley states

Besides spin, the valley degree of freedom, although less studied, can implement logic gates
with low power consumption. The advantage is that such logic gates are expected to have a
longer coherence time, since the valley degree of freedom is more robust than spin at
scattering/collisions due to a larger separation in the reciprocal space of the two unequivalent
states. During activity 2.3 we realized a comparison/correspondentce between the degrees of
freedom of spin and valley with the aim of identifying/proposing logic gates based on valley
states starting from logic circuit configurations based on spin qubits. In order to be relevant
for this aim, such a correspondence cannot be limited to a formal identification of the two
spin-up and spin-down states to the two unequivalent valley states, K and K’, especially
because the control of valley states is material-dependent, unlike the spin states that can be
manipulated with a magnetic field, irrespective of the material. As such, the study regarding
the excitation/detection modes of valley states, as well as of the manipulation mechanisms of
this degree of freedom must be discussed separately with respect to the two types of materials
in which the valley degree of freedom has been evidenced teoretically and/or experimentally:
graphene (including bilayer graphene) and dichalcogenides. In this study we have taken into
consideration only those characteristics that allow implementation of logic gates based on the
interference/propagation of valley states in ballistic structures, and not on localized valley
states (on potential wells, for example, as in [12]).

The vast majority of studies on valley states have concentrated up to now on their different
excitation, in order to induce valley polarization and to mimic correspondic effects for spin
states, such as Zeeman [13] or Hall [14].

Valley polarization can be achieved in principal by applying a uniaxial mechanic stress on a
graphene sheet with mass/bandgap (grown on SiC or hBN substrates [15]), by using
ferromagnetic electrodes in the case of dichalcogenides [16], or by optical excitation with an
electromagnetic field polarized either circular [17] or elliptic [18]. Although in the case of
optical excitation the valley polarization can be controlled, reaching values up to or over 90%,
this method is difficult to be applied in integrated circuits.

Regarding dichalcogenides, or TMD (transition metal dichalcogenides), these are materials of
type MX;, where M is a transition metal (Mo, W, etc.) and X a chalcogenid (S, Se or Te). A

10



common characteristic of these materials, especially of atomic layers of these materials, is that
the spin and valley states are coupled due to inversion symmetry breaking caused by their
crystalline structure and the large spin-orbit coupling. This fact, and the fact that these
materials have a mean free path/mobility significantly lower than in, limit the use of TMDs
for implementing spin qubits.

On the other hand, in graphene sheets with a bandgap of width A in which the charge carriers
with momentum p have an effective mass m, there is the valley-orbit interaction mechanism,
described by the Hamiltonian

Hyp =7

h 5
4mA(p><VV)-z (10)

where 7 is a valley index equal to -1 for K and +1 for K’ and V is the potential energy. This
Hamiltonian is in fact similar to that describing the Rashba spin-orbit coupling:

Hsozg(pruED-a (11)

where E is the electric field and « is the Rashba coefficient. Although the valley-orbit
interaction has a greater tunability potential in bilayer graphene than in monolayer graphene, a
gate voltage in the first case allowing the independent control of both Fermi level and
bandgap width [19], even in monolayer graphene this interaction mechanism induces valley
polarization via an electric field applied by a side gate [20]. In addition, in monolayer
graphene the two valley states are mixed in a proportion of 50:50 in an armchair nanoribbon,
the resulting state being suitable to be used as starting state in quantum algorithms, being
equivalent to that obtained by applying a Hadamard gate.

As result of activity Act. 2.3 we reached the following conclusions necessary to finalize Act.
2.4 in 2019, according to the Realization plan of the project:

- as material for logic gates involving valley states, the most suitable from the point of view of
mean free path and the possibility of manipulating these states is bilayer graphene, although it
is not clear up to now if armchair nanoribbons from this material can be used as starting states
for quantum algorithm implementation;

- as manipulation mechanism of valley states, the most suitable for implementing interference/
propagation based logic gates is the valley-orbit interaction — mechanism specific to graphene,
including bilayer graphene, which can be controlled by gate voltages;

- as excitartion/detection mechanism of valley states, we identified the most suitable one as
being that using armchair nanoribbons in conjunction with Bell-state measurements/spatial
separation of different valley states

- as promissing configurations for logic gates, we will concentrate on similar ones to those
reported here involving spin states in the presence of the Rashba effect

Preliminary results regarding the development of plasmonic logic gate configurations
using slot waveguides

Although the design of plasmonic logic gate configurations on slab waveguides is expected to
be studied in the 2019 stage of the project, we have considered necessary to start investigating
this subject earlier due to its complexity. More precisely, we have performed a preliminary
identification of possible configurations of interest and modeled them with a simple method
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based on the analogy with transmission lines. In 2019 we intend to improve the simulation
method using performant computing algorithms and to optimize them in order to fabricate
such logic circuits based on plasmonic slot waveguides.

We have identified two configurations of plasmonic logic gates of interest. The first one refers
to reconfigurable logic gates, potentially interesting, but quite difficult to realize
experimentally since not only the fabrication of slot waveguides must be controlled strictly
but also the realization of the regions with a variable refractive index (graphene or liquid
crystals). The second configuration is based on ring-shaped plasmonic waveguides, with
several input/output ports, less technologically demanding, but the simulation of which should
be improved to take into account the influence of the curvature on plasmon propagation. We
detail these configurations in the following.

Reconfigurable plasmonic logic gates

The proposed configuration consists of a slot plasmonic waveguide, of width W, formed from
a dielectric medium (air) with permittivity &, surrounded by metal (for example, silver), with
permittivity gag. Along this waveguide there are several regions, with lengths L;, (i = 1, 2 and
3in Fig. 11(a)), with permittivities & that can be controlled by applied voltages.

graphene liquid crystal molecules

dielectric
/ /
Sag v ," Ag
Ag
in &, Eor ot "
— W I D, I D, Ly LA
> «— e > gate electrode
S1g electrodes
Fig. 11 (a) (b)

As suggested in Fig. 11(b), these regions can be covered by a graphene sheet, the permittivity
of which can be modified by a gate voltage applied directly on the metal, or by liquid crystals,
the permittivity of which varies with the bias applied on the two parts of the waveguide,
which should be isolated. For a graphene-covered waveguide, in which the permittivity can be
varied in wide ranges [21], we denote by & =& and gy = & the permittivities correspunding
to the logic states 0 and, respectively, 1, the associated gate voltages being Vo and V;.

This configuration can implement plasmonic logic gates with one, two or three bits by
encoding the input logic states in the tunable permittivity/gate voltage values applied on the
covered regions, minimizing thus the problems with plasmon excitation. The values of the
transmission coefficient/transmitance T encode the output logic state. This circuit is based on
modulating the light interference via varying the permittivity of the covered regions, and can
be modeled with the help of the analogy with transmission lines [22-24], which holds in slot
waveguides that support only one propagating mode. For an operating wavelength of 1.55
um, this restriction imposes that W = 40 nm.

To illustrate how this circuit works, we consider first the implementation of the logic gate
NOT, for which only one region with variable permittivity is needed. The dependence of the
transmitance T on wavelength in this case is shown in Fig. 12(a) for L; = 355 nm, the solid
and dashed curves correspunding to & = 1.2 and & = 5. From this figure it follows that, at 1 =
1.55 um, T can have high values, associated to the output logic state/value of 0, for instance,
or small values, coded as logic state 1. The NOT gate can be implemented by varying the gate
voltage from Vj to V.
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If the slot waveguide is covered with two graphene sheets of lengths L; and L,, separated by a
distance D, that can be controlled independently by gate voltages, one can implement logic
operations involving two bits. In the example in Fig. 12(b), in which L; = L, = D; = 100 nm,
& = 1.2 and & = 4.75, the spectral dependence of the transmission was plotted for the input
states 00 (solied line), 01 (dashed line), 10 (dotted line) and 11 (dashed-dotted line); the
notation for the input states, XY (X = 0,1, Y = 0,1), shows that the voltage applied on the first
graphene region is Vx and on the second one is Vy. From Fig. 12(b), in which the curves for
01 and 10 overlap, and the curve for 00 has T almost equal to 1 on the whole spectral range, it
can be observed that at 1.55 um the transmitance is either close to 1 (high) or 0.65 (low). If
large values of T are associated to the logic value 0 and small values to 1, the proposed
configuration implements the OR gate, while an opposite association of both input logic states
(1 for permittivity g/voltage Vo and 0 for &/V;) and output logic states (1 for T high, 0 for T
low) allows the implementation with the same waveguide of the logic gate AND.

The same configuration with two regions covered with graphene, but for L; = L, = 100 nm, D,
=45 nm, & = 1.2 and & = 4.5 can implement the reversible CNOT gate at 1.55 um if the
input states 0 and 1 correspond to V, and, respectively, Vi, as can be seen from Fig. 12(c)
illustrating the spectral dependence of T for the input states 00, 01, 10 and 11 with the same
line type as in the example above; again, the curves for 01 and 10 overlap. However, in this
case the output logic state 0 is identified with a large value for T and the 1 state with a low T
value, the target bit being the first bit and the control bit the second one.

T T T T 02 T T T T T T
5 15 7 18 19 12 13 14 5 15 7 18 19
Alpm) (a) Alpm) (b)

When there are three graphene sheets, the permittivity of which can be independently
controlled, one can implement logice gates implying three bits. For instance, to implement the
universal and reversible Toffoli gate, which changes the logic value of one/target bit if two
control bits are 1, we can identify the target bit as the first bit/graphene region, with logic
states 0 and 1 coded in & and &y, and the control bits with the other covered regions, the logic
states 0 and 1 of which are coded in the permittivity values & and &. Figures 13(a) and
13(b) illustrate, respectively, the spectral dependence of the transmitance when the target bit
is 0 and & = 4.75, & = 1.2, and, respectively, when it has the value of 1 and &, = 1.2, & =

Fig. 13
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4.75,for Ly =Ly, =Lz =D; =D, =100 nm, & = 1.2 and & = 5. The continuous, dashed and
dashed-dotted black curves in Fig. 13(a) correspond to the states of th three graphene-covered
regions (in order) 000, 010 and 001, and the magenta curve corresponds to the state 011.
Similarly, the continuous, dashed and dashed-dotted red curves in Fig. 13(b) correspond to the
input states 100, 110 and 101, and the blue curve to 111. These dependences, which indicate a
change in the transmitance from small to large values around A = 1.55 um when both control
bits are 1, correspond to the Toffoli gate if we define the output logic state as O when T is
small (< 0.7) and 1 when T is large (> 0.95) in Figs. 13(a) and oppositely in Fig. 13(b)).

The results regarding the simulation of this reconfigurable plasmonic configuration with one,
two or three covered regions (actually, with three regions, each of which equivalent to air if
the relative permittivity is tuned to 1) was accepted an an ISI journal (see A4)

Ring-shaped logic circuits, with multiple input/output ports

This configuration is compact, versatile, and can be easily combined in cascade to implement
complex computing algorithms, the output logic states, encoded in the transmittance value in
one port, depending on the geometry and the phase of incident electromagnetic fields in all
other ports. In particular, we have studied configurations with 3 (see Fig. 14(a)) and 4 ports,
concluding that, once the number of ports increases the complexity of the response increases
also and, respectively, the fabrication tolerances become stricter. Therefore, it is preferable to
arrange in cascade two 3-port circuits, as in Fig. 14(b), than to use configurations with a larger
number of ports. As in the previous configuration, the propagation of electromagnetic fields in
multi-port ring-shaped plasmonic waveguides was simulated using the analogy with the
transmission modes, method that can be applied if only one propagating mode exists. In
addition, we have chosen symmetric configurations to take advantage of the even-odd mode
analysis method in transmission line circuits. In all cases the width of the Ag/aer/Ag slot
waveguide is d = 50 nm and the excitation wavelength is A = 550 nm.

Port3 Port4 Port2

I l Port] —> ——
Port] — <«—— Port 2 =
d
2

Port 3

Fig. 14 (a) (b)

For example, in a symmetric structure, as in Fig. 14(a), for which 12 =2l (lengths measured
between the centers of the input/output waveguides), the output intensity T =t|?, with
amplitude t, is represented in Fig. 15 as a function of |1, the complex input signals at ports 1

and 2 being denoted as & and @2 €XP#, with ay, a, the signal amplitudes and ¢ their relative
phase. From this figure, which shows the results fora; =1,a,=1, ¢=0;a;=1,a,=00ra; =
0, ap =1, irrespectivof ¢;anda; =1,a, =1, ¢= 7 ora; =0, a, = 0 (see the legend), it
follows that T is periodic in li/the output intensity is maximum if likspp is an integer
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multiple of 7, and this maximum T value is 4 times larger than the value corresponding to the
case when only one input is present.

2 16
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Fig. 15 Fig. 16 Fig. 17

For T maxim, codand starile logice de intrare 0 and 1 in valorile 0 and 1, respectiv 0 and 1.2,
ale amplitudinilor la porturile 1 and 2 [25], se observa din Fig. 16 ca circuitul cu 3 porturi
implementeaza poarta ireversibila OR for ¢ = 0 (intrari in faza) if starea logica de la ieandre
este identificati ca 1 for T > 0.3 and 0 in caz contrar. in Fig. 16 (vezi legenda) sunt
reprezentate curbele corespunzitoare intrarilor (az, a,) = (0,1), (1,1), (0,0) and (1,0). In mod

analog, for ¢ = 7z (intrari in anti-faza), circuitul poate implementa poarta ireversibila XOR for
acelaand mod de definire a starii de ieandre, adica ieandrea este 1 doar if (a;,a;) = (0,1) sau
(1,0). Pe de alta parte, if in Fig. 15 starea logica de ieandre 1 corespunde la T > 1 and este 0 in
caz contrar, circuitul implementeaza poarta ireversibilda AND if intrarile sunt in faza, adica
valoarea la ieandre este 1 doar if (a1,a2) = (1,1).

Circuitul cu 3 porturi poate implementa and poarta reversibila CNOT gate, care inverseaza
valuarea logica a unui qubit if bitul de control este 1 and il lasa neschimbat in caz contrar.
More precisely, as shown in Fig. 16, for the control bit at port 2 and the target bit at port 1, the
circuit implements the CNOT gate if ¢ takes values between 0.7z and 1.3z (for instance, ¢
=x) and if the output bit is 1 for T > 0.3. In particular, if there is qubit/logic state 1 at port 2,
the configuration implements the NOT gate for the input at port 1 in the same conditions as
above. Analogously, one can find/define output states in a 4-port configuration as a function
of its dimensions, and the amplitudes and phases of the input signals.

To illustrate how a cascaded configuration of two 3-port ring waveguides, as in Fig. 14(b),
can implement the CCNOT gate, we consider two circuits with l;kgpp an integer multiple of

rzand I, = 2l;, in which the logic values 1 of the input states (ai,az,a3) are encoded in the
amplitude values a1 =1, a, =a; =0.4, and have the logic value 0 if there is no signal at the

respective port. The dependence of the output intensity at port 4 on the phase diference ¢
between the inputs at the left circuit (port 1 and the output — port 3 of the right circuit)/length
L is represented in Fig. 17 for in-phase inputs at ports 2 and 3 for (aj,az,a3) = (1,1,1) (blue
line), (1,0,0) or (0,1,1) (red line), (1,0,1) or (1,1,0) (magenta), (0,0,1) or (0,1,0) (black line)
and (0,0,0) (green). Figure 17 demonstrates that the circuit consisting of two cascaded ring
waveguides can implement the CCNOT gate for the target bit at port 1 if the other bits/inputs
are control bits and if the output intensity has the logic state 1 for T > 0.2 for ¢ in the interval
0.757—-1.2x.

The results obtained regarding the modeling of multi-port slot waveguides circuits were
acceptate spre publicare intr-o revista ISI (vezi A5), and au fost diseminate la o conferinta
internationala (vezi C3).



In parallel with modeling possible logic plasmonic configurations, we have obtained some
preliminary results on the fabrication of some slot waveguides, which we have disseminated
at two international conferences (C4 and C5)
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